60428901

@ CONTROL DATA
CORPORATION

' MATRIX ALGORITHM
PROCESSOR III

(MAP Ill) SYSTEM

USER REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
NOS
NOS/BE

REVISION RECORD |

REVISION DESCRIPTION
A Manual released.
(05-01-175)
B Manual revised. This revision adds the MDRLSE call description, modifies the FILTER macro
(06-01-78) | description, adds appendix F, and incorporates miscellaneous editorial modifications. This
edition obsoletes all previous editions.
C Manual revised. This revision adds three macro descriptions and incorporates miscellaneous
(11~15-768) | editorial modifications. Pages ii, iii/iv, vi, vii, viii, ix, 1-1, 1-8, 2-5, 3-2, 3-3, 3-6, 3-14,
3~22, 3-23, 3-28, 3-29, 4-1, 4-2, 4-4, and A-1 are revised. Page3414.1 is added.
D Manual revised to incorporate reference information associated with modifications to the
(07-17-78) | MAP System Software Interface. Because of extensive changes to this manual, chart tape and

dots are not used, and all pages reflect the latest revision level. This edition obsoletes all

previous editions,

[Publication No.

60428901

REVISION LETTERS |, 0, Q AND X ARE NOT USED

Address comments concerning this
manual to:
Control Data Corporation
Publications and Graphics
4201 North Lexington Avenue

©1975, 1976, 1978 St. Paul, Minnesota 55112

by Control Data Corporation

or use Comment Sheet in the back of

Printed in the United States of America this manual,

.
L3

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot

near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE

| PAGE REV L PAGE REV PAGE REV REV PAGE REV

Front A-4 D
Cover - A-5 D

Title Page - A-6 D

ii D A-7 D

iii/iv D A-8 D

v D A-9 D

vi D A-10 D

vii D A-11 D

viii D A-12 D
1-1 D A-13 D
1-2 D B-1 D
1-3 D B-2 D
1-4 D C-1 D
1-5 D C-2 D
1-6 D Index-1 D

2-1 D Index-2 D

2-2 D Comment

2-3 D Sheet D

2-4 D Back Cover -

2-5 D

2-6 D

2-7 D

2-8 D

2-9 D

2-10 D

3-1 D

3-2 D

3-3 D

3-4 D

3-5 D

3-6 D

3-7 D

3-8 D

3-9 D

3-10 D

4-1 D

4-2 D

4-3 D

4-4 D

4-5 D

4-6 D

4-7 D

4-8 D

4-9 D

4-10 D

4-11 D

4-12 D

4-13 D

5-1 D

5-2 D

5-3 D

5-4 D

5-5 D

5-6 D

5-7 D

5-8 D)

A-1 D

A-2 D

A-3 D

60428901 D iii/iv

PREFACE

This manual provides reference information for
the CDC® Matrix Algorithm Processor III (MAP III)
System, which consists of a microprogrammable
processor called MAP and a software package
called the MAP System Software Interface (MSSI).
The MAP III system provides an efficient way for
user FORTRAN programs to perform lengthy array
calculations,)

The MAP III system interfaces with the following
extended core storage - equipped computer
systems running under CDC NOS or NOS/BE
operating systems,

. CDC 6000 series.

e CDC CYBER 70 models 72/73/174.

. CDC CYBER 170 series.
This manual is written primarily for FORTRAN
(FTN) programmers and computer operators who
use the MAP III system. Refer to the following
table for supplementary and related documents,
The following conventions are used in this manual.

° All numbers are decimal unless another
base is indicated.

e Logical zero and one are abbreviated 0
and 1, respectively.

e Bits are numbered from right to left
beginning with 0.

) [] enclose optional FORTRAN call
arguments.

° . « . indicates preceding pattern repeats
indefinitely.

60428901 D

The following articles describe the algorithms
underlying the fast Fourier transform (FFT)
macros described in section 3. The basic FFT
algorithm first appeared in article 1. Article 2
discusses many details relevant to the MAP
implementation of the algorithm. The time-saving
and space-saving variations used for the
REALFFT and INVRFFT macros are discussed on
page 65 of article 3.

1. J. W. Cooley and J. W, Tukey, "An
Algorithm for the Machine Calculation of
Complex Fourier Series,' Mathematics
of Computation, vol. 19, pp. 297-301,
April, 19865,

2. G-AE Subcommittee on Measurement
Concepts (W. T. Cochran, et. al.),
""What is the Fast Fourier Transform?'.
IEEE Transactions on Audio and
Electroacoustics, vol. AU-15, pp. 45-53,
June, 1967,

3. C. Bingham, M. D. Godfrey, and
J. W. Tukey. "Modern Techniques of
Power Spectrum Estimation', IEEE
Transactions on Audio and Electro-
acoustics, vol. AU-15, pp. 56-66,
June, 1967. :

DISCLAIMER

The MAP III system is intended for use only as
described in this manual. Control Data cannot be
responsible for the proper functioning of undescribed
features or parameters.

CONTROL DATA MAP Ill DOCUMENTS

Document Typet Part No. User Purpose
ECL 10000 Series Circuit Controlled 60417700 | Customer Describes MAP III logic elements
Description Manual) engineer and related symbology.
MAP Hardware Controlled 60429100 | Customer Provides MAP III hardware
Maintenance Manual engineer maintenance information.
MAP III Installation Uncontrolled - System Describes MSSI installation
Handbook (NOS) programmer procedure for NOS.
MAP III Installation Uncontrolled - System Describes MSSI installation
Handbook (NOS/BE) programmer | procedure for NOS/BE.
NOS Programmer's Uncontrolled - System Defines MSSI internal structure
Maintenance Aid, CYBER programmer for NOS.
MAP III Software
NOS/BE Programmer's Uncontrolled 22836700 | System Defines MSSI internal structure
Maintenance Aid, CYBER programmer | for NOS/BE.
MAP III Software
6000 MAP III Controlware Uncontrolled 12104400 | System Defines external interface to
External Reference programmer MAP III internal controlware.
Specification (ERS) _
MAP III On-Line Controlware| yneontrolled - System Describes additional controlware
|1ERS programmer | macros.
6000 MAP III Assembler Uncontrolled 12104300 | Controlware Describes assembler used to
ERS programmer generate internal controlware.
MAP III Command Uncontrolled 12104200 | Customer Describes MAP III control unit
Diagnostics ERS engineer diagnostics.
MAP III Memory Test Uncontrolled 12104100 | Customer Describes MAP III data storage
(QMM) ERS engineer diagnostics.
MAP III Test Functional Uncontrolled 22836600 | Customer Describes MAP III functional unit
Units (TFU) ERS engineer diagnostics.
MAP I System Confidence | Uncontrolled 12103900 | Customer Describes diagnostics used to
Test (QM3) ERS i engineer confirm normal MAP III system

operation. :

tControl Data is not responsible for the contents of uncontrolled documents.

60428901 D

“

1. MAP III SYSTEM

MAP
MAP Cabinet
Options
Data Format
Functional Description
Input /Output
Control
Arithmetic
Data Storage
MSSI
User Control
Job Sequence

2. MACRO STRING ASSEMBLY

Macro String
Header
Macro Field
Parameter Field
Execution Sequence

MSAM Status

MSAM Calls
METOPEN
MAPSET
MALLOT
MEQUIV
MACRO
MPARAM
MAPNOGO
MAPGO
MODIFY
MCLOSE
MRECALL
MRESET
MDUMP
MDRLSE

3. MACROS

Macro Categories
Macro Parameters
Control/ Pseudo Macros

NOOP

JUMP

RJUMP

HALT

END

60428900 D

CONTENTS

]
1-1 UPM 3-1
TMM 3-1
1-1 XMM2DM/XDM2MM 3-1
1-1 ECS Input/Output Macros 3-2
1-1 LOADP32 3-2
1-3 UNLDP32 3-2
1-3 LOADP30 3-2
1-3 UNLDP30 3-2
1-3 LOADL32 3-2
1-3 UNLDL32 3-2
1-3 LOADR32 3-2
1-3 UNLDR32 3-2
1-5 Arithmetic Macros 3-3
1-5 SUMPROD 3-3
STKMOVE 3-5
CPLXFFT 3-6
ICPXFFT 3-6
2-1 REALFFT 3-8
INVRFFT 3-6
2-1 FILTER 3-7
2-1 NMO 3-8
2-1 CVEC/NVEC/MVEC/NMVEC 3-8
2-1 ADDVEC/SUBVEC/MULVEC/DIVVEC 3-8
2-4 IPVEC 3-8
2-4 SUMRVEC 3-9
2-4 ZEROVEC/BCASVEC 3-9
2-4 MINE/MAXE "3-9
2-8 SQRTVEC 3-9
2-6 MAVVS/MAVSV/MAVVYV 3-9
2-6 TVEC 3-9
2-8 COMVEC 3-10
2-7 ,
2-7
2-8 ;
g-g 4. PROGRAMMING 4-1
2-9 File Declaration 4-1
2-9 Field Length Allocation 4-1
2-8 MDUMP Control Card 4-1
2-10 MET /Macro Strings 4-1
LOCE Function 4-1
MAP Requests 4-2
Program Recall 4-2
3-1 MET Code/Status Values 4-2
MSAM Request Values 4-2
3-1 CP Monitor Error Return Values 4-2
3-1 - MAP PP Driver Error Return Values 4-3
3-1 Timing/Error Tables 4-3
3-1 Example Programs 4-3
3-1 Program SOP 4-3
3-1 Program NUMBERS 4-7
§~§ Program FOURIER 4-10

vii

5.

COMMANDS/MESSAGES

Operator Commands

A,
B.

bt
1
W N

Loall i o
[
D O

[7- 0
[

viii

MAPINIT,

MAP, IDLE.

MAP, ABORT.

MAP, CHECKPOINT.
MAP, CLEAR.

MAP, NODUMP.

MACRO PARAMETERS
MSAM CALL/MACRO SUMMARIES

MAP Cabinet

Basic MAP and Options

Minimum MAP Configuration for
MAP III System

MAP Internal Data Format

MAP Functional Entities

MSSI Environment

MAP Status Words
SUMPROD With Positive shift

5-1 MAP, UNLOCK.
MAP, DIAG.
5-1 MAP, DIAG, XXXXX.
5-1 MAP, DOWN.
5-1 MAP, UP.
5-1 MSSI Console Messages
5-1 MSSI Dayfile Messages
5-1 MSSI Error Log Messages
5-1 MSSI CERFILE Entry Format
APPENDIXES
A-1 C. MAP RADIX POINT ADJUST WORD
B-1
INDEX
FIGURES

1-1 2-1 Unpacked Macro String Buffer
1-2 2-2 Packed Macro String Buffer

2-3 MET Format
1-2 3-1 Packed 32-Bit Format
1-3 3-2 REALFFT/INVRFFT Data
1-4 Storage Use
1-6 4-1 SOP Data Flow

5-1 MAP CERFILE Entry Format

TABLES

2-8 3-2 SUMPROD With Negative shift
3-4

(S S NS IS IS IS IS S|
I OO U et et

W N
LI R N |

wWworwN

[0
1
00 W =]

3-5

60428900 D

MAP 11l SYSTEM 1

This section describes MAP and MSSI, which are
the hardware and software elements, respectively,
of the MAP III system.

MAP

The hardware element of the MAP III system is
Matrix Algorithm Processor III (MAP), a micro-
programmable array processor containing its own
data storage. MAP uses a 32-bit floating-point
format for arithmetic calculations and contains a
numerical conversion unit to translate various
computer system data formats to the 32-bit format.

Microcode that resides within MAP is called
controlware. Although MSSI supplies default
controlware that provides standard MAP capabil-
ities, controlware options are available to
increase these capabilities. Appendix B lists
standard and optional MAP capabilities and asso-
ciated macros.

The user controls MAP with macro strings, each
of which is a collection of macros assembled and
loaded into MAP by means of MSSI. Generally
speaking, a macro is a symbol representing the
microcode for performing a specific task or
algorithm. For example, the HALT macro
represents the microcode that stops macro exe-
cution, the LOADP32 macro represents the micro-
code that transfers packed data from extended core
storage (ECS) to MAP, and the SUMPROD macro
represents the microcode that performs a sum of
products calculation. From the user's point of
view, MAP executes a macro string as a computer
executes a program.

MAP CABINET

Figure 1-1 shows the MAP cabinet, which includes
a power bay, a logic bay, and an optional memory
bay. Operating controls are in the power and
logic bays, and input/output cables connect to the
logic bay.

OPTIONS

Figure 1-2 shows the options that can be added to
MAP.

1 K = 1024 words.

60428900 D

° Data storage options permit MAP data
storage to be expanded from its minimum
size of 24 Kt to its maximum size of
256 K.

Y Additional arithmetic units reduce pro-
cessing time for certain algorithms. For
example, MAP performs sum-of-products
calculations most rapidly when equipped
with four add/subtract units and four
multiply units. Controlware must be
modified when arithmetic units are added.

s%":s\

ﬁ:’_:,_s___--_.—:——“?
{ﬁ:
2
@
= \.
T
2
K\
\

<

POWER
BAY
LOGIC
BAY |
MEMORY
BAY
(OPTIONAL)
Figure 1-1. MAP Cabinet

Figure 1-3 shows the minimum MAP configuration
necessary to support MSSI.

1-2

DATA ADDITIONAL
STORAGE ARITHMETIC
EXPANSION UNITS
8K TO '
208K SQuARE DIVIDE MULTIPLY SUQ'?F?/\CT
MEMORY ONIT UNIT UNIT ONIT
EXPANSION,
POWER SQUARE ADD/
SUPPLY ROOT D M LY SUBTRACT
EXPANSION UNIT UNIT
24K IPLY ADD/
MEMORY Bt SUBTRACT
EXPANSION UNIT
. ECS
INTERFACE
ASSEMBLY/ | NUMERICAL
DISASSEMBLY | CONVERSION
UNIT UNIT
CONTROL
UNIT -
24K PP . ADD/
DATA CHANNEL MA';‘::Q"‘_‘“‘:E M‘{';J";'-Y SUBTRACT
STORAGE INTERFACE UNIT
Figure 1-2. Basic MAP and Options:
ECS SQUARE DIVIDE
INTERFACE ROOT
UNIT UNiT
"
ASSEMBLY/ | NUMERICAL ADD/
DISASSEMBLY | CONVERSION MU";:"';'-Y SUBTRACT
UNIT uNIT ! UNIT
CONTROL
UNIT
24K PP ADD/
DATA CHANNEL MA'Q‘Iﬁ'gQNCE Mut;','.’r” SUBTRACT
STORAGE INTERFACE UNIT
Figure 1-3. Minimum MAP Configuration for MAP III System

MAP OPTIONS

BASIC MAP

60428900 D

DATA FORMAT
Figure 1-4 shows the MAP internal data format.

31,30 24123 0

EXPONENT MANTISSA

SIGN RADIX POINT

Figure 1-4. MAP Internal Data Format

The format consists of a 24-bit normalized man-
tissa, a 7-bit, signed twos complement exponent,
and a sign bit using sign and magnitude repre-

sentation. The exponent represents powers of 2.

The range for positive normalized intern%l floating-
point format MAP numbers is from 2-100g to
0.77777777g * 2778. The smallest and largest
decimal numbers (7 significant digits) in this
range are 0.5421011 * 10-19 and 0.9223371 -
10719, All positive fixed-point numbers not
exceeding 224 (16, 777,216) can be represented
exactly in internal format.

FUNCTIONAL DESCRIPTION

Figure 1-5 shows MAP functional areas.

Input/Qutput

During MAP input, the input/output area accepts
ECS, peripheral processor (PP), or cassette
data; passes it through the assembly/disassembly
unit; and places the data on the assembly/disas-
sembly bus. From here, the data can transfer
directly to the control area or indirectly to data
storage through the numerical conversion unit and
the result bus. During MAP output, data flow
reverses except that data returns from data
storage to the assembly/disassembly bus through
operand bus 2 and the numerical conversion unit,

Control

The control area executes controlware and macro
strings. Controlware determines how MAP pro-
cesses each algorithm and resides in control
memory, read-only memory (ROM), and sub-
control memory. Macro strings reside in macro

60428900 D

memory and are used to sequence microcode
execution. The user generates macro strings by
using the FORTRAN subroutine calls described in
section 2. The 6000 MAP III Assembler ERS
listed in the preface describes the special assem-
bler used to generate controlware.

Arithmetic

This area contains arithmetic units and the buses
that transfer operands/results between data stor-
age, the arithmetic units, and the numerical con-
version unit. Figure 1-2 shows the number and

types of arithmetic units that can attach to MAP.

Data Storage

Data storage contains from 24 K to 256 K of 32-bit
storage in three contiguous sections labeled x, y,
and z. Maximum sizes for sections x, y, and z
are 96 K, 96 K, and 64 K, respectively. Hard-
ware switches specify the boundaries between
sections so that addresses are continuous from the
first word of section x to the last word of section
Z.

Data storage is equipped with three accesses,
labeled A, B, and C. Since each access can read
from or write to any nonbusy section, up to three
data storage operations can proceed simultaneously.
Thus, two accesses can read operands while, at
the same time, the third stores a result.

MSSI

The software element of the MAP III system is the
MAP System Software Interface (MSSI), a collectior
of COMPASS programs, FORTRAN routines, and
MAP controlware that coordinates with the NOS or
NOS/BE operating system. MSSI allows the user
to: .

e Generate macro strings for calling a
series of MAP-resident algorithms into
execution.

e Transfer controlware and macro strings
to MAP.

e Monitor MAP status.

e Print MAP dump information.
MSSI also provides a repertoire of commands and
messages that allows an operator to control the

MAP III system from the system console. Section
5 describes these commands and messages.

1-3

1-4

MACRO SUBCONTROL
MEMORY MEMORY
1K x 18 BITS 1K x 72 BITS
CONTROL
MEMORY
2K x 60 BITS
CONTROL
LOGIC
ROM
256 x 60 BITS
CONTROL

/

SECTION X | 9

8K TO 96K

—

SECTION Y
8K TO 96K

=

SECTION Z
8K TO 64K

A

-

ACCESS
C

ACCESS
B

ACCESS

DATA STORAGE -

72-BIT ASSEMBLY/DISASSEMBLY BUS

1

=

ASSEMBLY/
DISASSEMBLY
UNIT

NUMERICAL
CONVERSION
UNIT

[32.BIT RESULT BUS

<=

A

=\

A t i,

ARITHMETIC
UNITS

32-BiT OPERAND

32817

BUS 1

OPERAND

BUS 2

A 3

A

ARITHMETIC

ECS CHANNEL
INTERFACE INTERFACE
A A A
CASSETTE
TRANSPORT
INPUT/
OUTPUT
v v
ECS PP
8
Figure 1-5.

MAP Functional Entities

60428900 D

USER CONTROL

A user employs the MAP III system by writing a
FORTRAN program that:

e Places operands in ECS.

° Generates a macro string that instructs
MAP to obtain the operands from ECS,
process them, and return results to ECS.

® Removes the results from ECS for output
or further processing.

To simplify MAP-related programming, MSSI pro-
vides a set of execution time FORTRAN routines
called the Macro String Assembly Module (MSAM).
By making calls to these routines, a user program
can build a macro string and also accommodate
ancillary macro string requirements.

The following sequence shows tasks performed by a
typical MAP-related program. Parentheses enclose
MSAM-provided calls, which are described in
section 2 along with the macro string format.
Section 4 contains examples of MAP-related
programs.

1. Declare file OUTPUT in PROGRAM state-

ment.

2. Define parameters and data arrays to re-
side in central memory and ECS,
respectively.

v

3. Open MAP environment table (MET). The
MET is a table used for communication
between MSSI and the operating system.
(METOPEN)

4. Clear buffer area used to build macro
string. (MAPSET)

5. ° Define MAP data storage arrays. (MALLOT,

MEQUIV)

6. Define common macro parameters.
(MPARAM)

7. Use MACRO calls to build macro string.

a. Transfer operands from ECS to MAP
with LOADxxx macro.

b. Use arithmetic macros (REALFFT,
ADDVEC, and so on) to perform cal-
culations and use control/pseudo
macros (TMM, JUMP, RJUMP, UPM)
to perform tests, jumps, and updates.

60428900 D

c. Transfer results from MAP to ECS
with UNLDxxx macro.

d. Stop macro string execution with HALT
or END macro.

8. Pack macro string. (MAPNOGO)
9. Execute macro string. (MAPGO)

10. Allow for MAP-related program recall.
(MAPGO call argument or MRECALL call)

11. Release ECS dump area. (MDRLSE)
12, Close MET. (MCLOSE)
13. Process or output results.

14, Terminate MAP-related program.

JOB SEQUENCE

Figure 1-6 shows a user program in the MSSI
environment. A typical MAP III' system job pro-
ceeds as follows:

1. The user program begins execution and
calls MSAM routines to initialize tables,
prepare a macro string, and request macro
string execution. User program activity
may suspend either immediately after the
request or after additional processing.

2. After MSSI has scheduled the macro string
and ensured that the correct controlware
is loaded, the macro string transfers from
central memory to MAP and begins
execution.

3. MSSI records MAP status during macro
string execution. When the macro string
completes execution or a fatal error
occurs, MSSI places the user program
back in execution after updating timing/
error tables.

1-6

USER FIELD LENGTH

FORTRAN
LIBRARY
ROUTINES

MAP
PP
DRIVER

USER
PROGRAM
—————
MACRO '
STRING '
BUFFER 4
I .

MACRO ERROR]
STRING TABLES 4
AS‘SEDMBLY MAP «
ODULE | gyyvirONMENT | 0
TABLE 4
I
SYMBOL i
TABLE)

OPERATING

SYSTEM
CENTRAL
PROCESSOR
MONITOR | |
) Figure 1-6. MSSI Environment

60428900 D

MACRO STRING ASSEMBLY 2

\

This section describes macro string formats, Macro
String Assembly Module (MSAM) status, and
FORTRAN calls provided by MSAM. The macro
string formats are described here chiefly for refer-
ence purposes, since MSAM automatically builds
and packs macro strings according to calls from
user programs.

Appendix B contains an MSAM call summary.
Section 4 describes the LOCE function (used to
obtain the address of an ECS-resident variable) -and
provides programming considerations applicable to
MSAM.

MACRO STRING

Figures 2-1 and 2-2 show the same macro string in
unpacked and packed formats, respectively. MSAM
uses the unpacked format while building a macro
string, and then packs the macro string before send-
ing it to MAP for execution,

Each macro string has a header, a macro field, and
a parameter field. MSAM builds the macro field
from the top down and the parameter field from the
bottom up. Parameters within a block remain in
user-assigned order, regardless of the position of
the block in the parameter field.

HEADER

Before packing a macro string, MSAM uses the
header as a scratch area for maintaining data neces-
sary to complete the macro string. After packing
the macro string, MSAM rewrites the header with
the information shown in figure 2-2. When it trans-
fers the macro string to MAP, the MAP PP driver
replaces the word count and checksum in the header
with RA (x), the relative address of MAP data
storage section x.

MACRO FIELD

In unpacked form, each 60-bit word of the macro
field contains a macro code in bits 0 through 17 and
space for a tag in bits 18 through 59. A macro code
is an 18-bit number associated with a macro. For
example, the macro code for the NOOP macro is
020000g. MACRO call arguments determine the
placement of macro codes and tags as follows:

® A MACRO call with 0 for the tag argument
places the macro code for the macname
argument in bits 0 through 17 of a macro
field word. When the call has a nonzero
paraddr argument, the call places the
parameter address for the paraddr argu-
ment in the next macro field word.

60428900 D

e A MACRO call with a 4L JUMP or 5LR JUMVIP
macname argument places the appropriate
macro code in bits 0 through 17 of a macro
field word, and places the paraddr argu-
ment in bits 18 through 59 of the same word
(figure 2-1, word 14).

e A MACRO call with a nonzero tag argu-
ment generates code in two or three words
and is used to begin macro string segments
that will be entered with RIJUMP macros.

The first word contains the macro code for
a NOOP macro (020000,) in bits 0 through
17 and the tag argumen? (with the leftmost
bit unconditionally set) in bits 18 through 59
(figure 2-1, word 11). This reserves a
word for storing a return address and the
macro code for a JUMP macro.

The second word contains the macro code
for the macname argument in bits 0 through
17 (figure 2-1, word 12).

A third word contains the parameter ad-
dress if the MACRO call had a nonzero
paraddr argument (figure 2-1, word 13).

MSADM automatically loads the first word of each
macro field (word 6) with a HALT macro (100000)
labeled - INIS. The END macro places in the 8
macro string a JUMP macro that transfers control
to the HALT macro at word 6.

PARAMETER FIELD

In unpacked form, each 60-bit word of the param-~
eter field contains a parameter value or a pointer
to a parameter value in bits 0 through 17, and space
for a tag in bits 18 through 59. Upon receipt of a
MACRO call, MSAM examines the macname argu-
ment and determines the parameter count for the
macro, MSAM then searches for the parameter
location specified by the paraddr argument, trans-
fers the parameter to the parameter field, and
continues transferring subsequent parameters until
the parameter count is satsified.

MSAM does not satisfy indirect references to
parameter values (that is, values tagged by
MPARAM calls) until the macro string is packed.

When it knows that a parameter specifies a data
storage address, MAP examines parameter bits 10
and 11 for O (section x), 1 (section y), or 2 {section
z). MAP determines the address by adding the
contents of header word 0, 1, or 2 to the contents
of the parameter field word specified by bits 0
through 9 of the parameter.

Word

-1¢

DG b W N

7
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34

TThe first word is considered -1 as it is not packed

59 18 17 0-Bit
MSAM Scratch
Area Header
- 1 N I S 1 0 0 0 0O
L (o] (o] P 04 0 0 00
F I N 1 S 2 0 0 0 00O Macro
= (o] (@] P 02 00 00 Field
4 0 0 3 2 2
000 0 2 1
L O (0]} P 2 0 00 00
Unused
X A R R A 000 001
0 0 0 0 0 1
0 01 750
0 0 0 3 40
000000 Parameter
C O M M o] N 00 0 0 0 1 Field
0 00 00O
0 0 00 0O
0 0 1 7 60
0 0 0 0 0 1
0 00 00O
8 O M M O N 177777

Figure 2-1.

P

or loaded into macro memory.

Unpacked Macro String Buffer

60428900 D

60428900 D

Word

59
-fT MSAM Header Information
1 CM Word
0 Count Checksum RA(Y) RA(Z) 1
1 | RA(Z)2 LWA(X) [LWA(Y)
2 LWA(Z) V41 0 00 0o o770 4
3 OOIIV//JZOOOOGVAO2000O
4/%400322V%000021}7420
50 0 1 1 7 7
8 v . _ 40 0 0 1 0 o7 T4 0
700 0 2.0 0 000 0 17700 0 1 7 5 0
10%000340V/000000W40
110 0 3 4 AooooooV//oooooo
127////1001750(////]000001%///00
13/0 0 0 0 1 7.7 7 7 17§
14
15
16
17
20
21
22
23
24 Unused/unpacked Data
25
26
27
30
31
32
33
34

0 <——— Bit

Header

Macro
Field

Parameter
Field

tThe first word is considered -1 as it is not packed or loaded into macro memory.

Figure 2-2,

Packed Macro String Buffer

EXECUTION SEQUENCE

All macro strings begin execution at word 7. The
macro string shown in figures 2-1 and 2-2 executes
as follows:

1. Execution begins at word 7 with an RJUMP
macro that loads a return address (10) and
JUMP macro in =OOP and then transfers
control to =OOP+1. =QOOP is the tag argu-
ment (with the leftmost bit set) of the
MACRO call that placed the LOADIL32
(4003228) macro in word 12,

2. The LOADL32 macro causes MAP to fetch
the parameter block whose address is at
word 13, perform the load operation, and
return control to the JUMP macro at word
14,

3. The JUMP macro at word 14 transfers
control to =O0P.

4. =0OP now contains a JUMP macro that
* transfers control to word 10,

5. Word 10 contains a JUMP macro that
transfers control to -INIS,

6. -INIS contains a HALT macro that stops
execution,

MSAM STATUS

Each MSAM call (except MDUMP and MDRLSE) has
a status argument that specifies a location to receive
MSAM status. Since MSAM does not clear the

status word, the user program should clear the
status word after each MSAM call unless cumulative
status is desired. MSAM status bits are defined as
follows:

Bit(s) Description
0,1 Unused.
2 Illegal array name.
3 No controlware address; assume de-
fault controlware.
4 No controlware name; assume default
controlware.
5 MET undefined.
6 MET closed.
7 Macro string buffer too small.
8 Symbol defined twice.
9 Unused.
10 Array overflow into previously defined
field.
11 Base array undefined.
12 Equivalent array exceeds base array
field length.
13 Undefined or previously packed macro
string,
14 . Undefined macro.
15 Illegal data in macro parameter field.
16 MAP not available.
17 Macro string executed through different
MET (informative).
18 Array overflows x data storage
(informative).
2-4

Bit(s) Description

19 Array overflows y data storage
(informative).

20 Array overflows z data storage.

21 Undefined label.

22 MCLOSE attempted on closed MET.

23 MSAM call error.

24 Macro string buffer too large; assume
macro memory size plus 1.

25 METOPEN attempted on open MET,

26 Parameter block contains indirect

parameter reference or illegal param-
eter (informative).

27 Indirect parameter block too large for
macro string buffer.

28 Illegal macro label.

29 ECS unload array last word address not
multiple of 8.
30-59 Unused.

An installation parameter classifies MSAM status
bits as fatal or nonfatal. The user program aborts
when MSAM detects an invalid argument count or
when MSAM detects more fatal errors than allowed
by the errlim argument of the METOPEN call.

MSAM CALLS

The following calls allow user programs to control
the MAP III system.

METOPEN

Establishes MAP environment table (MET) within
user's field length. MET contains pointers, code/
Status values, and error information used by MAP
PP driver and central processor monitor. A user
program can define more than one MFT, and more
than one macro string can be associated with the
same MET. Figure 2-3 shows MET format.

When user specifies new controlware, METOPEN
transfers controlware to ECS and records ECS
address of controlware in MET. Refer to 6000

MAP III Assembler ERS listed in preface for control-
ware structure.

Sequence:

CALL METOPEN (met, symtable, control-
ware, conaddr, status [, errlim}))

met MET name.

symtable Symbol table name,

controlware 0 (use default controlware)
or left-justified, zero-filled
name of local file containing
user-supplied controlware.

conaddr 0 (default controlware) or

destination ECS address
(within user's field length)
for user-supplied control-
ware.

60428900 D

status Location to receive MSAM Examples:
status.
CALL METOPEN (MET1, SYM, 0, 0, STAT (1), 2)
errlim Number of fatal assembly
errors allowed before CALL METOPEN (MET2, ARRAYS, S5LAYLIB,
aborting job. LIBLOC, ST)
DEFAULT
CONTROLWARE \
USER
CONTROLWARE
23 8[17 5[5 WORD
NORMAL GLOBAL CODE/ 1
TRANSFER. 408 NAME _ERRORS STATUS
SPECIAL s{sfs7 j 3a]as 2212} 20 ECS
CHANNEL of8 ESTIMATED MAP 1 CONTROLWARE 2
TRANSFER | ™ TIME ; PRIORITY \ ADDRESS
159
USER 0 3
PROGRAM
ONLINE 1%° MACRO 42]41 18]17 . FL
DIAG- STRING 0 {TOTAL) 4
NOSTIC ADDRESS
9 ERROR 421 1817
TABLE 0 Y FL 5
| TIMING 4241 18)17 2 FL
TABLE [6
ADDRESS (TOTAL)
59 SYMBOL 42141 18117 MACRO
TABLE 0 FL 7
ADDRESS (TOTAL)
4847
U 8 FATAL ERROR BITS 8
UNCONDITIONAL DUMP
59 50§4
ERROR
NOS LIMIT .
UNCONDITIONAL NO DUMP
) rm |
NOS/BE ERROR
LIMIT
Figure 2-3. MET Format

60428900 D

2-5

MAPSET

Zero-fills macro string buffer and restores header
information.

Sequence:

CALL MAPSET (met, macbuf, length, status)

met MET for this macro string.
macbuf Macro string buffer name.
length Number of words in macro
string buffer.
status Location to receive MSAM
status.
Example:

CALL MAPSET (METBUF, STRING, 100, STAT)

MALLOT

Defines and assigns name to MAP data storage
array, thereby enabling macro string parameters
to reference array by name. Individual array ele-
ments may be referenced by subscript in same
manner as individual parameters in tagged param-
eter block (refer to MPARAM call description).

Sequence:
CALL MALLOT (met, aryname, maplen, 0, mem,
status)
met MET name.
aryname Left-justified, zero-filled
array name (one to seven
characters, first must be
alphabetic).
maplen Number of elements in array.
0 Required, but unused.
mem 1Ln where n is section
(x,y,2z) of MAP data storage
to store first word of array.
status Location to receive MSAM
status.
Examples:

CALL MALLOT (METZ2,6LARRAY1,
1000, 0, 1LX, STAT(8))

CALL MALLOT (MYMET, 6LFILTER,
FTLEN, 0, 1LZ, ERRORS)

MEQUIV

Defines and assigns name to array within previously
defined MAP data storage array. New array must
not extend beyond last word of previously defined
array.

Sequence:

CALL MEQUIV (met, equivname, maplen,
basearray, offset, status)

met MET name.

equivname Left-justified, zero-filled,
new array name {(one to seven
characters, first must

be alphabetic).

maplen Number of elements in new
array.

basearray Previously defined array
name,

offset Number of locations between
first element of previously
defined array and first ele-
ment of new array.

status Location to receive MSAM
status.

Examples:

CALL MEQUIV (JOBMET, 3LIAA, 200, 2LIA, 800,
STATUS) .

CALL MEQUIV (MYMET, 6LCOSINE, 512,
4LSINE, 256, STAT(12))

MACRO

Places macro and associated parameters into macro
string.

Sequence: ‘
CALL MACRO (macstr, tag, macname, paraddr,
status)
macstr Macro string name.
tag Unused (0) unless macname

begins a macro sequence
entered by an RJUMP or
JUMP macro, in which case
tag is a left-justified, zero-
filled label (one to seven
characters, first must

be alphabetic) for a NOOP
macro used to reserve the
location immediately pre-
ceding the location to hold
macname.

60428900 D

. macname Left justified, zero-filled

macro mnemonic.

Unused (0) for NOOP, HALT,
and END macros.

paraddr
Jump address for JUMP or
RJUMP macros.

Name of first parameter
for other macros.

Location to receive MSAM
status.

status

Examples:

CALL MACRO (MACS, 0, sLFILTER, PS(1),
ST(10))

CALL MACRO (STRING1, 4LLOOP, TLLOADP32,
PARS(1), ERRS)

CALL MACRO (STRING1, 0, 5LRJUMP, 4L1OOP,
ERRS)

CALL MACRO (MACSTR, 0, 3LEND, 0, ST)

MPARAM

Assigns name to and places common parameter
block in macro string. When block contains more
than one parameter, second through last parameters
may be referenced by subscripting parameter name
using . OR. expression. For example, second
parameter in block tagged 6LCOMMON can be
referenced as sLCOMMON. OR. 2,

Sequence:

CALL MPARAM (macstr, tag, value, length,
statusl, loc])
macstr Macro string name.
tag Left-justified, zero-filled
label {(one to seven charac-
ters, first must be alpha-
betic) by which parameter
block is referenced.

First value in parameter
block. wvalue must not be
an array name or the name
of a parameter block.

value

length Number of parameters in

block.

Location to receive MSAM
status.

status

loec (Optional) Location to receive
position of first parameter in
packed macro string.
Interpret loc contents as
follows: :

60428900 D

.-—
o

Number of 60-bit words
between macro string
word 0 and word contain-
ing all or part of first
parameter.

Right-justified, end-
around, left-shift count
that right-justifies first
parameter in 60-bit
word. When left-shift
count is 12, parameter
bits 0 through 11 are in
bits 48 through 59 of the
word and parameter bits
12 through 18 are in bits
0 through 5 of the previous
word,

Examples:

CALL MPARAM (MAC1, TLADMASK1, 1777778,
1, STAT(15))

CALL MPARAM (MS2, TLNPOINTS, NPTS, 1,
ERRS, PACKADD)

CALL MPARAM (STRING, 6LCOMMON, COM(1),
6,ST)

MAPNOGO

Satisfies macro string tag references and packs
macro string, but does not request macro string
execution.

Sequence:

CALL MAPNOGO (met, maecstr, status(, ref])

met MET name.

macstr Macro string name.

status Location to receive MSAM
status.

ref (Optional) Argument (any
value) that returns symbol
table and data storage map
in program listing (refer to
Example Programs in
section 4).

Examples:

CALL MAPNOGO, (MET3, STRING, ERR)
CALL MAPNOGO, (MYMET, MAC, STAT, 1)

MAPGO

Requests macro string execution. If macro string
is not packed, MAPGO satisfies macro string tag
references and packs macro string before requesting

execution.,

Sequence:

CALL MAPGO (met, macstr, timtable, errtable,
recall, estime, status], febits])

met
macstr
timtable

errtable

recall

estime

status

febits

Examples:

MET name.
Macro string name,

Timing table name (refer to
section 4) or TLNOTABLE
if no table is desired.

Error table name (refer to
section 4) or TLNOTABLE
if no table is desired.

Nonzero: Suspend program
execution until macro string
completes execution.

0: Continue program
execution,

Estimated macro string
execution time in milli-
seconds. estime must not
exceed maximum time set
by installation parameter.

Location to receive MSAM
status.

(Optional) 48-bit pattern
plus dump bit corresponding
to four MAP status words
described in table 2-1, MAP
status bits having corre-
sponding febits bits set are
defined as fatal error bits.
Bit 48 of febits causes MAP
PP driver to transfer MAP
data storage to ECS dump
area after macro string
completes execution. De-
fault febits pattern defines
each MAP status bit as fatal
and specifies that no dump
occur,

CALL MAPGO (MET1, MS2, TIM, ERR, 0,

ESTIME, STAT)

CALL MAPGO (MET, STRING, 7TLNOTABLE,
TLNOTABLE, 1LR, EST, ST(17),
17777010406170007B)

o
!
[oe]

TABLE 2-1. MAP STATUS WORDS
MAP
Status febits
Word Bit Description
0 Data storage access A parity
error.
1 Data storage access B parity
error.
2 Data storage access C parity
error,
Memory 3 Subcontrol memory parity
error error.
4 Control memory parity error.
5 Macro memory parity error.
6 Access A address out of
range,
7 Access B address out of
range.
8 Access C address out of
range.
9 ECS parity error.
10 ECS abort.
11 ECS field length error.
12 Negative square root (unit 1).
13 Negative square root (unit 2).
14 Numerical conversion unit
overflow.
15 Numerical conversion unit
underflow.
Arithmetic 16
error 3 17
18
19
20 Unused.
21
22
23
24 Overflow in multiply unit 1.
25 Overflow in multiply unit 2.
26 Overflow in multiply unit 3,
27 Overflow in multiply unit 4.
Arithmetic 28 Underflow in multiply unit 1.
error 2 29 Underflow in multiply unit 2.
30 Underflow in multiply unit 3.
31 Underflow in multiply unit 4.
32 Overflow in divide unit 2.
33 Underflow in divide unit 2.
34 Divide 0 by 0, divide unit 2.
35 Divide by 0, divide unit 2.
36 Overflow in add/subtract unit 1.
37 Overflow in add/subtract unit 2.
38 Overflow in add/subtract unit 3.
39 Overflow in add/subtract unit 4.
Arithmetic 40 Underflow in add/subtract
error 1 unit 1.
41 Underflow in add/subtract
unit 2.
42 Underflow in add/subtract
unit 3.
43 Underflow in add/subtract
unit 4.
44 Overflow in divide unit 1.
45 Underflow in divide unit 1.
46 Divide 0 by 0, divide unit 1.
417 Divide by 0, divide unit 1.

60428900 D

TABLE 2~-1. MAP STATUS WORDS (Contd)

MAP
Status | febits

Word Bit Description

- 48
49
50
51
52
- 53
54
55
56
57
58
59

Unconditional dump flag.

Unused.

MODIFY

Replaces first value of MPARAM-defined common
parameter block with new value, then recomputes
checksum and stores new checksum in header.

Sequence:
CALL MODIFY (macstr, loc, value, status)
macstr Macro string name.
loc Parameter position returned

to location specified by loc
argument of MPARAM call.

value - New value for parameter.
Relative ECS limit addresses
for ECS load/unload macros

should be adjusted as follows:

ECS load macro: Add 48 to
value and increment result
until result is multiple of 8.
ECS unload macro: Add 1 to
value and increment result
until result is multiple of 8.

status Location to receive MSAM
status,

Examples:
CALL MODIFY (CHGMAC, WORD, NEWVAL, ST)
CALL MODIFY (MAC, RET, 177777B, STAT(6))

MCLOSE
Ensures that MAP activity associated with MET is

complete, closes MET, and clears schedule table
entry associated with MET.

60428900 D

Sequence:

CALL MCLOSE (met, status)

met MET name.
status Liocation to receive MSAM
status.

Example:

CALL MCLOSE (MET2, ST(25))

MRECALL

Suspends program execution until MAP finishes
processing macro string.

Sequence:

CALL MRECALL (met, status)

met MET name,
status Location to receive MSAM
status.
Example:

CALL MRECALL (MYMET, ERRS)

MRESET
Reinitializes symbol table for MET so that previously
packed and newly generated macro strings can exe-
cute from same MET.

Sequence:

CALL MRESET (met, status)

met MET name.
status Location to receive MSAM
status.

Example:

CALL MRESET (MET, ST)

MDUMP

Transfers ECS dump information to file OUTPUT
for printing. Transferred information includes
contents of MAP status registers, register files,
and macro memory as well as information specified
by MDUMP call arguments. (Refer also to MDUMP
Control Card in section 4.)

Sequence:

CALL MDUMP (x,y, z,c)

X,¥.2,¢

0: Do not include following
MAP information in dump.

nonzero: Include following
MAP information in dump.

X; data storage section x
contents.

y; data storage section y
contents.

z; data storage section z
contents,

c; control and subcontrol
memory contents.

Example:

CALL MDUMP (X, Y, Z, 0)

MDRLSE

Sequence/Example:

CALL MDRLSE

Releases MAP ECS dump area without printing it and
clears dump area interlock word.

60428900 D

MACROS 3

“

This section describes standard and optional macros
that may be placed in a macro string by means of
the MACRO call described in section 2. A macro
may be placed in a macro string only if the micro-
code for the macro is part of the controlware speci-
fied by the METOPEN call that establishes the MET
for the macro string.

Macros are referenced in this section by their
mnemonics. Appendix B contains a summary that
provides the full name for each macro.

MACRO CATEGORIES

Macros are mnemonics that represent and call into
execution MAP microcode sequences. Macros are
divided into the following categories.

® Control/pseudo macros determine control
flow within a macro string.

e ECS input/output macros transfer data
between ECS and MAP data storage.

e Arithmetic macros perform various array
calculations, many of which involve two
operand arrays and a result array,
Generally, MAP operates most efficiently
when each of the three arrays resides in a
separate section of data storage. Refer to
individual macro descriptions for more
specific information.

MACRO PARAMETERS

Appendix A contains tables that define parameters
required for those macros that use parameters.

CONTROL/PSEUDO MACROS

NOOCP

Transfers control to next macro.

JUMP

Transfers control to macro memory location speci-
fied by paraddr argument of MACRO call.

60428900 D

RIJUMP

Allows control to transfer from original macro
sequence to secondary sequence, then back to original
sequence. Secondary sequence entry location is
specified by paraddr argument of MACRO call.

RJUMP adds 1 to current macro memory program
address, places result in JUMP macro, stores JUMP
macro at address paraddr, and transfers control to
address paraddr+l. Sequence starting at address
paraddr+l returns control to original sequence by
jumping to address paraddr.

HALT

Stops macro execution. All macro strings should
terminate with HALT.

END

Causes jump to HALT macro (labeled-INIS) auto-
matically stored by MSAM at first location of macro
field (location 6). User can terminate macro string
without END by inserting HALT macro(s) where
appropriate.

UPM

Replaces or adds value to common parameter(s)
defined by MPARAM call. This allows parameters
to be modified during macro string execution.
Table A-2 defines UPM parameters.

TMM

Compares value to common parameter defined by
MPARAM call. Transfers control {o next location
when values are not equal. Transfers control to
next location plus one when values are equal.
Table A-2 defines TMM parameters.

XMM2DM /XDM2MM

Allows integer values between 131 071 and -131 072
to be exchanged between MAP macro memory and
data storage as follows:

FLAG
Macro Transfer Parameter
XMM2DM Macro memory-to- 0
data storage.
XDM2MM Data storage-to- 1

macro memory.

Macro memory-to-data storage transfer can be part
of sequence for transferring macro memory data to
ECS.

Table A-12 defines parameters for these macros.
Each macro automatically selects FLAG parameter.
AU parameter points to first macro memory location
to supply or receive data (use MPARAM call to link
AU parameter to first transfer location)., D FWA,

D OFF, and D IF parameter values must each be 0,

ECS INPUT/OUTPUT MACROS

LOADP32
Transfers data from ECS to MAP using format shown

in figure 3-1. Table A-3 defines LOADP32
parameters.

UNLDP32
Transfers data from MAP to ECS using format

shown in figure 3-1. Table A-4 defines UNLDP32
parameters.

LOADP30

Transfers data from ECS to MAP according to
following format.

59 30 29 0

30-Bit Word 2

30-Bit Word 1

Table A-3 defines LOADP30 parameters.

UNLDP30

Transfers data from MAP to ECS according to
following format.

59 30 29 0

30-Bit Word 1 30-Bit Word 2

Table A-4 defines UNLDP30 parameters.

LOADL32

Transfers data from ECS to MAP according to
following format, :

59 28 27 0

32-Bit Word Unused

Table A-3 defines LOADL32 parameters.

The following UNLDL32 and UNLDR32
macros require approximately twice as
much execution time per word as their
LOADLS32 and LOADR32 counterparts.
When possible, use the UNLDP32 or
UNLDP30 macro to transfer data from
MAP to ECS.

UNLDL32

Transfers data from MAP to ECS according to
following format.

59 28 27 0

32-Bit Word Sign Fill

Table A-4 defines UNLDL32 parameters.

LOADR32

Transfers data from ECS to MAP according to
following format.

59 32 31 0

Unused 32-Bit Word

Table A-3 defines LOADR32 parameters.

UNLDR32

Transfers data from MAP to ECS according to
following format.

59 32 31 0

Sign Extension 32-Bit Word

Table A-4 defines UNLDR32 parameters.

60428900 D

59 28 27 0

| 132)1] 2(28) | cm/ECS word 1
59 56 55 24 23 0
p@] 3(32) [4(24) | cM/ECS word 2
59 52 51 20 19 0
[[4®] 5(32)] 6(20) | cM/ECS word 3
59 48 47 ; 16 15 0
[sa2 | 7(32) | sae) | EM/ECS word 4
59 44 43 12 11 0
[sus) l 9(32) [10a2) | cm/ECS word 5
59 40 39 8 7 0
| 10(20) | 11(32) [1289 | cm/ECS word 6
59 36 35 43 0
{ 12(24) l 13(32) fi44) cm/ECS word 7
59 ; 32 31 0
] 14(28) l 15(32) | cm/ECS word 8

Taa(bb) = bb bits of 32-bit word aa

Figure 3-1. Packed 32-Bit Format

ARITHMETIC MACROS Correlation occurs when s is 1 and convolution
occurs when s is -1, shift is a positive, negative,
or zero integer that specifies an initial shift of
array A with respect to array B as shown in tables

SUMPROD 3-1 and 3-2.

Performs correlation or convolution operation on SUMPROD assumes that arrays A and B are zero
filter array Ag, Ay, ..., Ara.g and trace array outside their domains of definition, so pad zeros do
Bo, By, ..., BLB-1- yielding result array not have to be included.

Co- €1: -+ CLC-1 defined by:
MAP executes SUMPROD most efficiently when each
LA-1 array resides in a separate section of data storage.

iBj+si+shift Table A-5 defines SUMPROD parameters.

C.= Z A
J
i=0

LA, LB, and LC are positive integers and
IB>LA>10.

60428900 D 3-3

3-4

TABLE 3-1. SUMPROD WITH POSITIVE shift

s, shift, j Array Relationship For Products Cj
0 0 0 O 8.8, 8.8.8 8
+1,0,0 0 17273775 | B AR +AB_ ...
0 0 0 0 Aj A, Al Ay A, A 070 1 e
, o A1 A2 A3 Ay Ag
0 0 0 0 B,B, B_B. 8. 8
+1.0,1 0717273 s AgBy*A Ba*AsBg*- -
0.0 0 0 0 AgA, A, Ay 4,
0 0 0 0 88y 8,8, 8, 8,
-1,0,0 AgBy
Ay A3 A5 AL A 0 0 0 O O
0 0 0 0O B,B, 8. B. B. B
-1,0,1 0717273 %y s AgBL*A 8,
Ag Ay A3 Az AL A D O O O
0 0 0 0 B.B8, B.B.B8. 8
+1,2,0 07172737 s AgBa*A1B3*AS8,+- -
00 0 0 0 0 Aga, Ay Ay
0 0 0 0 B, B, B. B, B. B
+1,2,1 0717273 " "s AgB3*A1B *ASBc*e - s
00 0 0 0 0 0 aga, A,
0 0 0 0 B,B, B, B. 8. 8
-1,2,0 0717273 " s AgBa*ALB, A8,
AL A A, AL A A A0 O O
b A5 Ay A3 Ag Ay Ag
0 0 0 0 B,B, B_B.B. B
-1.2,1 0 1 T2 73 N S g i ALB.+A.B.+AB
AL A A_ A AL A_A. A- 0 O 073 172 "a" 3%
7 8 Ag Ay A3 A5 Ay A
LA-1
G z 44 Bj+si+shift

60428900 D

TABLE 3-2. SUMPROD WITH NEGATIVE shift

s, shift, j Array Relationship For Products Cj
0 B 0 0 Bgg By Bz B3 By Bg
+1L,~-2,0 AZBO+A3B1+AyBa+. ..
0 0 Ag Ay Az A3z Ay Ag A A7
0 0 0 o Bg By Ba B3y By Bg
+l,-2,1 ALBD+AEBL+A388+-..
0 0 @ Ag Ay Ap A3 Ay Ag Ay
0 0 0 g Bg By Bp B3y By Bg
+L,-2,2 AUBU'PA];BL*AEBE*'"'
0 0 0 o Ag Ay Ag A3 Ay Ag
0 0 0O 0 BgBy BaByBy B
c1e=2.0 1 B2 83 5y Bg 0
Az A, Ag0 0 0 D 0 O @
0 0 0 0 BgByBaB3 By Bg
-l,-2+1 0
A3 Ap Ay Ap0 0O 0 0 0 @
0 0 0 0 BgByBaB3B8yB;s
~L.~-2.2 AgBg
Ay A3 Ag Ay, Ag0 0O 0 0 O
LA-1
G = 2L ABjigirsnis
i=0

STKMOVE

Performs stack operation (array sum) or move

operation (array relocation) on arrays Ag AqL...

Ay c-1and BO' Bi,...,BLC-1, yielding result
array Cq, Cy,...,Cp,c-1 defined by:

Ci=Ai+Bi (stack)
Ci=Ai (move)

LC is a positive integer.

User need not supply zero-filled B array for move
operation. MAP executes STKMOVE most efficiently

when each array resides in a separate section o
data storage.

60428900 D

f

Some moves that overlap old and new list
locations require negative increment
factors. For example, to transfer a list
from locations 300 through 399 to locations
350 through 449, set-array first word
addresses to 399 and 449, and set the
increment factor for each array to -1,

Table A-6 defines STKMOVE parameters.

CPLXFFT
Performs fast Fourier transformation (FFT) on
complex series B, By, ..., BN— , yielding complex
series CO’CI’ -+, Cy_ defined by:
N-1
- -jk
Ck z ij
j=0
Nis 2" and n is an integer not less than 3,
iisa/~1.
W is exp (2 7 i/N).
k is 0,1,...,N-1,
Real parts of By, imaginary parts of Bi, and sine/
cosine table must each reside in separate sections
of MAP data storage. After CLPXFFT executes,
real and imaginary parts of each Cy. occupy locations

initially occupied by real and imaginary parts of By.

Table A-7 defines CPLXFFT parameters.

ICPXFFT

Inverses process performed by CPLXFFT.
ICPXFFT performs FFT on complex series Cop. C
-++»CN-1, ylelding complex series By, By, ...,
By-1 defined by:

1’

N-1
= ik
Bj (1/N) = CkW
k =0

N, W, k are as defined for CPLXFFT and
jis 0,1,...,N-1,

Real parts of Cyg, imaginary parts of Ck, and sine/
cosine table must each reside in separate sections
of MAP data storage. After ICPXFFT executes,
real and imaginary parts of each Bj~occupy locations
initially occupied by real and imaginary parts of Cj.

Table A-7 defines ICPXFFT parameters.

REALFFT

Performs FFT on real series Rp.Ri....,RN-1.
yielding data to form complex series Co.Cyoenns
Cy-1 defined by:

N-1
o = -k
Ck z ij
§=0

N is 2" and n is an integer not less than 4.
M (figure 3-2) is N/2.

iiss/~1.

W is exp (2 7 i/N).

kis 0,1,...,N-1.

Figure 3-2 shows MAP data storage placement of
real series before execution and first M+1 peints of
complex series after execution, Sine/cosine table
resides in remaining section of data storage..
Following relationship may be used to obtain re-
maining points of complex series.

Cr*Cn-k

M<k< N.

— Denotes complex conjugate (if C is x+y,
is x-iy).

Table A-8 defines REALFFT parameters.

INVRFFT
Inverses process performed by REALFFT.
INVRFFT performs FFT on complex series CO’CI’
-++,CN-1, yielding real series R ,R ,..., RN-l
defined by: :

N-1

= jk
Re=(1/N) = c;w!
j=0
N, W,k are as defined for REALFFT.

C0 and Cy1 must be real and user should suppl& only
complex numbers Cp.Cy1,...,Cy1- Figure 3-2 shows
MAP data storage placement of first M+1 points of
complex series before execution and all N points of
real series after execution. Sine/cosine table re-
sides in remaining section of data storage.

Table A-9 defines INVRFFT parameters.

60428900 D

MAP Data Storage
Relative Address

Before REALFFT
After INVRFFT

After REALFFT
Before INVRFFT

Both Sections Section 1 Section 2 Section 1 Section 2
0 RO R, RE(CO) IM(CO) =0
1 R, R, RE(CI) IM(CI)
2 R4 R5 RE(CZ) IM(C2)‘
“ 'J-\ oy o L b
ke o] ™ e T T
M-1 RN-Z BN-I RE(CM-I) IM(CM-I)
M no no RE(C,,) IM(C,,) =0
data data M M
- .th .
NOTES: R, =i real point
RE(Ci) = real part of ith complex point
IM(Cj) = imaginary part of ith complex point

Figure 3-2. REALFFT/INVRFFT Data Storage Use

FILTER

Uses Weiner-Levinson algorithm to solve Weiner-
Hopf equation

[ro 1 7y T3 ™o [Fol [Go
Ty To Ty Ty -f|F1 |G1
Fa F1 To 71 Th-2

s T2 71 To Th-3 N

r r F G

gl O.J..n. [0

for array Fj where arrays rj and Gj are given. To
solve Weiner-Hopf equation, FILTER first solves
auxiliary equation

— S -
rg Ty Ty T, L | Y o
r1 rO ry r2 rn_1 a 0
Fa Ty To Ty © Th-of

T3 o T1 Yo To-gf| - [

r r a 0
| n 0 jlnj L

for array a; where array 3; is prediction error
operator for unit prediction distance with ag=1, and
an is expected error for n+l element operafor.
FILTER then uses array ay from second equation
to solve first equation for array Fj.

FILTER parameters accommodate following pro-
cessing options,

[When IFSPIKE parameter is zero, FILTER
stops when second equation is solved.
User program may then examine array aj
to determine whether FILTER should solve
first equation.

60428900 D

When IFSPIKE parameter is nonzero,
FILTER solves both equations,

When I[FSTABL parameteér is zero, FILTER
checks array ay during generation to deter-
mine whether array F; is stable. If array
F; is unstable, FILTER returns code and
length of stable portion of array F;in
parameter-specified locations. Arrays F;
and A; contain only elements corresponding
to stable portion of array F;.

When IFSTABL parameter is nonzero,
FILTER does not check stability.

Length MS and length MD can be used to
save FILTER execution time after trial
execution. For example, assume user has
200-element F; array to calculate but elects
to calculate first 20 elements, perform
check, and then conditionally calculate
remaining 180 elements. For first calcula-
tion, user loads 200-element r; and G;
arrays, sets MD parameter to 20, am} sets
MS parameter to zero. For second
calculation, user ensures that all arrays
and three-word ALPHA buffer are intact,
sets MD parameter to 200, and sets MS
parameter to 20. Upon receipt of second
request, FILTER starts calculating at
twenty-first element using previously
calculated elements.

FILTER also checks for conditions indicating that
array F; is singular. When it detects singular
condition, FILTER returns code in parameter-
specified location.

Table A-10 defines FILTER para;'neters.

NMO

Accepts seismic trace and produces output trace
corrected for normal moveout. NMO reports
apparently muted (zero) values in input trace, allows
for muting front portion of output trace, and oper-
ates in alternate mode to produce output trace for
later input to velocity analysis programs.

NMO transfers to the output trace input trace
samples selected by addressing equation
= S 3%k 2 -
Ij /(D Vi) +(j Tr) T

T
r

1

Ty is'input trace sample rate (nominally
milliseconds).

Ty is time of first input trace sample (same
unit as T,).

Vj is sample i (i and j may differ) of array
containing squared inverse velocity values.
(If D is in feet and T is in milliseconds,
array V is in milliseconds per foot squared.)

D is squared offset distance corresponding to
surface position of input trace.

Ij is unrounded jth address of input trace
array. NMO converts I; to integer by
rounding up, then stores sample from I at
location j of output trace array.

User can employ parameter K2 and BETA array
value THRESH to mute (clear) beginning of output
trace. THRESH determines index JTuRESHs Which
is last output trace index where two ¢onsecutive
arrival times differ by less than THRESH. Arrival
time, T, is computed by:

_ ” w42

T -ﬁDvVi) + (G Tr) .

NMO mutes output trace by clearing first K samples.
)

K = max (K2, JTHRESH

Table A-11 defines NMO parameters, velocity
function list, and BETA array.

CVEC/NVEC/MVEC/NMVEC

Perform following calculations.

3-8

FLAG Equivalent
Param- FORTRAN
Macro Calculation eter Statement
CVEC Copy vector 0 D(D)=A(I)
NVEC Negate vector 1 D(I)=~A(1)
MVEC Magnitude 2 D({I)=ABS[A(1)]
vector
NMVEC Negative 3 D(I)=-ABS[A(D)}
magnitude
vector

Table A-12 defines parameters for these macros.
Each macro automatically selects appropriate FLAG
parameter. AU parameter value of 1, 2, 3, 4
selects corresponding MAP add/subtract unit.

ADDVEC/SUBVEC/MULVEC/DIVVEC

Perform following calculations,

FLAG Equivalent
Param- FORTRAN
Macro Calculation eter Statement

ADDVEC Add vectors 0 DI)=A(I)+B()

SUBVEC Subtract 1 D(I)=A(1)-B(I)
vectors

MULVEC Multiply 2 D(I)=A(T)*B(I)
vectors

DIVVEC Divide 3 D(I)=A(I)/B(D)
vectors

Table A-13 defines parameters for these macros.
Each macro automatically selects appropriate FLAG
parameter. AU parameter value of 1, 2 selects
corresponding MAP add/subtract/multiply/divide
unit. AU parameter value of 3, 4 selects correspond-
ing add/subtract/multiply unit.

IPVEC

Performs inner product vector calculation defined by:

Dffinal)=D(initial)}+ Z A(I)*B(I).

60428900 D

Table A-13 defines IPVEC parameters. D IF param-
eter must be set to 0 to produce scalar D(final),
FLAG parameter value of 0 clears D{(initial). FLAG
parameter value of 1 leaves D(initial) undisturbed.
AU parameter value of 1, 2, 3, 4 selects corresponding
MAP add/subtract and multiply units.

SUMRVEC

Performs sum reduction vector calculation defined
by:

D(final)=D(initial)+ = A(I).

Table A-12 defines SUMRVEC parameters. D IF
parameter must be set to 0 to produce scalar
D(final). FLAG parameter value of 0 clears
D{(initial). FLAG parameter value of 1 leaves
D(initial) undisturbed. AU parameter value of
1,2,3, 4 selects corresponding MAP add/subtract
unit.

ZEROVEC/BCASVEC
Perform following calculations.
FLAG Equivalent
Param- FORTRAN
Macro Calculation eter Statement
ZEROVEC Zero array 0 D(I)=0
BCASVEC Broadcast 1 D(I)=A
scalar

Table A-12 defines parameters for these macros.
Each macro automatically selects appropriate FLAG
parameter. A IF parameter value must be 0 for
BCASVEC. ZEROVEC ignores A FWA, A OFF, and
A IF parameters. AU parameter value of 1,2,3,4
selects corresponding MAP add/subtract unit.

MINE/MAXE

Perform following calculations.

FLAG Equivalent
Param- FORTRAN
Macro Calculation eter Statement
MINE MIN elements 0 D(I%A)MINI[A(I),
B(I)]

D(I)=AMAX1[A(I),
B(I)]

MAXE MAX elements 1

60428900 D

Table A-13 defines parameters for these macros.
Each macro automatically selects appropriate FLAG
parameter. AU parameter value must be 0 for each
macro.

SQRTVEC

Performs square root vector calculation equivalent
to FORTRAN statement D(I)=SQRT(A(I)).

MAP provides positive root and declares square root
error for each negative element of A(I).

Table A-12 defines SQRTVEC parameters. FLAG

parameter value must be 0. AU parameter value of
1, 2 selects corresponding MAP square root unit.

MAVVS/MAVSV/MAYVYY

Perform following calculations.

FLAG Equivalent
Param- FORTRAN
Macro Calculation eter Statement
MAVVS Multiply add 0 D(I)=(AI)*B{D)+
vector, vec-
tor, scalar
MAVSV Multiply add 1 D(I)=(A(1)*C)+B(I)
vector, sca-
lar, vector
MAVVV Multiply add 2 D(I)=(A(D)*B(1))

vector, vec- +C(I)
tor, vector

For MAVVS/MAVSV and MAVVYV, arrays A, B, D
and A, B, C, respectively, should reside in separate
sections of MAP data storage.

Table A-14 defines parameters for these macros.
Each macro automatically selects appropriate FLAG
parameter. For MAVVS and MAVSV, C IF param-
eter value must be 0. AU parameter value of 1,2, 3,4
selects corresponding MAP add/subtract and

maultiply units.

TVEC
MAP automatically rounds up when converting data
storage values to external fixed-point values. TVEC
counters this roundup by preprocessing values
according to following equivalent FORTRAN state-~
ments.

If A(I) .GE. 1.0, then D(I)=A(I)-.5

If A(I) .LE. -1.0, then D{I) = A(I)+.5

If A(I) .LT. 1.0and A(I) .GT. -1.0, then D{I)=0.0

Table A-12 defines TVEC parameters. FLAG pa-
rameter value must be 0. AU parameter must
point to macro memory location containing 200
(use MPARAM call to link AU parameter to loca-
tion containing 2008).

COMVYEC

Tests corresponding elements in two arrays, re-
cords number of test failures, and records offsets
for first elements that fail test. Table A-12 defines
COMVEC parameters. FLAG parameter value
selects test as follows:

Equivalent FORTRAN

FIAG Parameter Test Statement

0 A(D . EQ. D(D
A(D) . LE. D(D)
2 . A(D) .LT. D(D)

AU parameter points to first of three macro mem-
ory locations to hold test results (use MPARAM call
to link AU parameter to first test result location).
Test result locations are defined as follows:

Location Contents

First Number of times test failed.

Second Absolute offset from A of first A
element to fail test. '

Third Absolute offset from D of first D

element to fail test.

60428900 D

PROGRAMMING

b —

This section contains miscellaneous programming
information related to the MAP IIl system and pro-
vides example programs.

FILE DECLARATION

A user program making MSAM calls should declare
file OUTPUT on the PROGRAM card.

FIELD LENGTH ALLOCATION

Because MSAM consists of object-time routines,
the user should allocate an additional 3100g words
of central memory to accommodate these routines.

Also, the user program must dimension buffer
areas for MSSI elements that reside in the user
field length. The following list provides approxi-
mate sizes for these elements. To determine the
exact buffer length for a particular macro string,
refer to the symbolic reference table and memory
map generated by the ref argument of the
MAPNOGO call.

680-Bit Word

MSSI Element Requirement
MET 8 per MET.

Symbol table 4 plus 2 for each MALLOT

and MEQUIV call.

Macro string 8 plus 14 for each MACRO

buffer call plus 2 for each MPARAM
call plus an additional 3 for
each macro requiring type 3
parameters (table A-14).

Timing table 64.

(optional)

Error table 64.

{optional) .

MDUMP CONTROL CARD

This control card transfers part or all of the ECS
dump area to an output file and then prints the file.

MSSI transfers the contents of MAP status regis-
ters, register files, macro memory, control mem-
ory, subcontrol memory, and data storage to the
ECS dump area when requested by the febits argu-
ment of a MAPGO call or when a fatal MAP execu-
tion error occurs. The user can then copy part or

all of the dump information from ECS to an output
file with an MDUMP control card (abort situation)
or an MDUMP call (unconditional dump).

Once it has loaded the ECS dump area, MSSI pre-
vents writing into the dump area until one of the
following occurs.

. The user job issues an MDUMP call or
executes an MDUMP control card.

° The user program issues an MDRLSE call.

o The operator issues a MAP, NODUMP.
command.

When a user program is likely to result in a MAP
dump, the user should ensure that the ECS dump
area is released after the dump either by including
an MDUMP or MDRLSE call in the program or by
including an MDUMP control card in the control
card deck.

The MDUMP control card format is:
MDUMP[(X, Y, Z, C)]
All arguments are optional.

X,Y.Z Print indicated section of MAP
data storage.

C Print MAP control and subcontrol
: memories.

Transferred information includes the contents of
MAP status registers, register files, and macro
memory as well as the information specified by
MDUMP control card arguments.

MET/MACRO STRINGS

As long as the user allocates sufficient field length,
there is no restriction on the number of METs or
macro strings employed by a program. A MAPGO
call may have any open METT listed as the met
argument. MSAM status bit 17 (informative status)
sets when the met argument of a MAPGO call is not
the same as the met argument used when building
the macro string.

LOCE FUNCTION

The LOCE function may be used to obtain the ECS
address of an ECS-resident variable.

TMET referenced must specify proper system library for macro string.

60428900 D

Bit 59 of LOCE-returned ECS address
is 0,

Format:
loc = LOCE (variable)

loc Location to receive ECS ad-

dress of ECS-resident variable.

variable ECS-resident variable.

Example:

LOCA = LOCE (IBC)

MAP REQUESTS

MSSI uses an ECS-resident schedule table to handle
MAP requests. The schedule table contains a fixed
number of elements, called requests. A request
can reside in one of three chains called empty,
inactive, and active. A METOPEN call moves a
request from the empty to the inactive chain and
assigns the request to the MET identified in the
call. A MAPGO call moves the request from the
inactive to the active chain for MAP processing.
When MAP processing completes, the request re-
turns to the inactive chain.

When a MET is no longer needed, the user program
should close the MET with an MCLOSE call to move
the associated request from the inactive to the
empty chain.

PROGRAM RECALL

MSSI provides two methods of suspending program
execution while a macro string executes. The first
method is to provide a nonzero value as the recall
argument of the MAPGO call that requests macro
string execution. This suspends program execution
until the macro string completes execution.

The second method is to provide 0 as the recall
argument of the MAPGO call, continue program
execution as desired, and then issue an MRECALL
call to suspend program execution until the macro
string completes execution.

MET CODE/STATUS VALUES

MSAM communicates with the CP monitor and MAP
PP driver by means of a 9-bit MET code/status
value stored in bits 0 through 8 of the first 60-bit
‘word in a MET. Rules for interpreting MET code/
status values are:

] An even value less than 200g indicates that
MSAM has requested action, but the action
is not yet complete. .

® An odd value less than 200g indicates that
the last MSAM-requested action is
complete.

[A 2xx, value indicates a CP monitor error
return.

L] A 3xx8 value indicates a MAP PP driver
error return.

MET code/status values are described as follows:

MSAM REQUEST VALUES

Octal Value Description

120 Request copy of schedule table.

122 Read ECS dump table.

124 Read ECS partition table.

130. Clear dump table interlock.

140 MET open.

150 MET close.

160 Request active entry.

170 Lock MAP.

172 Unlock MAP (on-line diagnostics
only). .

174 Down MAP (on-line diégnostics
only).

176 Up MAP.

CP MONITOR ERROR RETURN VALUES

Octal Value Description
211 Illegal MET.
213 MAP locked.
215 Unknown schedule table entry.
217 MAP down.
221 Requested equipment not
available. :
231 Open/close sequence error.
241 Schedule table full.
251 MET close while active.
261 Illegal function code.
271 Illegal dump request.

60428900 D

MAP PP DRIVER ERROR RETURN VALUES

Octal Value Description

311 Macro string time limit
exceeded.

321 Fatal MAP execution error.

323 Nonfatal MAP execution error.

331 Control point error,

341 User CM or ECS address out
of range.

351 Macro string checkword error.

361 MP3-detected hardware error.

TIMING /ERROR TABLES

The MAPGO call allows a user program to define
two 64-word tables where MSSI records cumulative
timing and error information for each type of
macro. When cumulative results are not desired,
the user should initialize each table before issuing
the MAPGO call defining the tables. Either or both
of the tables may be deleted by using TLNOTABLE
as the timtable/errtable argument of the MAPGO
call.

Table entries are arranged according to the macro
codes listed in table B-1. To obtain the address
corresponding to the entry for a macro type, add
the macro code to the first address of the table.

For example, if TIME is the timing table first word
address, the entry for the ICPXFFT (055) macro is
at TIME+5. If TITAB is the FORTRAN array name
for the timing table array, the entry for the
ICPXFFT (058) macro is TITAB(6).

The timing table entry format is:

29 36 35 0
Number of times | Total number of milli-
this macro has seconds (NOS) or quarter-
executed milliseconds (NOS/BE)
spent executing this
macro

The error table entry format is:

59 48 47 0
Unused MAP status as described in
table 2-1

EXAMPLE PROGRAMS

The following programs show how MSAM calls are
used to generate and execute macro strings.

PROGRAM SOP

This program reads two arrays from separate
tapes, performs a sum-of-products calculation on
the arrays, and then returns the result to a third
tape. Figure 4-1 shows data flow for program
SOP.

CM ECS - MAP
P1(8)
(TAPE 1)——> SAMPLE 1 [—»
DATA 1
P2(8) v é
(TAPE 2)——> SAMPLE 2 > g
DATA 2 =
(TAPE 3)<s— < a
P2(9) z -
RESULT [
Figure 4-1. SOP Data Flow

60428900 D

OO

CrO O

(s XX al

SO0

[N aNel

YOO

OO

PROGRAM SIP (QUTPUTSTAPELs TAPE2, TAPE 3)

THIS PRIGRAM READS 100 SAMPLES EACH FRIM TAPEL AND TAPE2. THEY ARE
LOADED INTQ MAP DATA MEMORY WJHERZ A SUM IF PRONDUCTS IS PERFORMED
AND THE RESULT IS WRITTEN TO ECSe <ESJLTS ARES THEN WRITTEN T3
TAPE3 PR1JR TJ PROCESSING THE NEXT 5 ET OF SAMPLES.

RESERVE BUFFER SPACE FIR TA3LES AND ARRAYS

QIMENSION M2T(88)s MAC(B0), ISYH(10) s [TIM(64), IERR(54)
DIMENSION DATAL(100), JATA2(100), P1(11), P2{11)s P3(11), P4(9)
INTESER PLy, P2, P3, P4

TST = O

OEFINE 9ARAMETERS FOR LOAD LEFT-JUST IFIED 32 BIT DATA

P1(1) = 7LSAMPLF1

P2(1) = 7LSAMPLE?
P1(2) = P2(2) = 1
P1(3) = P2(3) = 100
Pl{4) = P2(4) = 16G43
P1(5) = P2{(5) = 603
P1(6) = F2(6) = 1777773
P1(7) = F2(7) = O
F1(8) = 0

PLI9) = P1(8) + 100
P2(3) = PL(I) +1
P2(9) = P2(3) + 100

P1(10) = P2(10) =]
P1{11) = P2(11) = 0

St T UP PARAMETERS FIR SUM GF PRAIUCT S

P3(1) = 7LSAMPLEL
P3(2) = F3(4) = P3(6) = 1
P3(3) = 7uSANPLE2

P3(5) = 6LRESULT

P3(7) = P3(3) = P3(3) = 100
PIC10Y a 1

P3(11) = 3

SET JP PARAMETERS FIR UNLJIAD LSFT=-JJSTIFIED 32 BIT JATA

P4(1) = 6LRESULT
P4g2) = 1

P4(3) = 100

Fal4) = 14043

P4(5) = 77238 . v
P4a(6) = 1777773

P6(7) = 0

P4a(8) = P2(3)

P4d3) = (P2(8) + 101373 #*3 +3

SeT UP MET AND DEFINE ARRAYS

CALL MZTOPSN (MET, ISYM, Oy 0, IST)

Catl MALLUT (48T, 7LSAMPLS], 100, 2L MNSs 1L Xe IsT)
CALL MALLOT (MET, 7L3AMPLZ2. 100, 2uNSe 1ILYs IST)
CALL MALLIT {METs 5LRESULT, 100+ 2LNS» 1L2» IsT

CREATS 4ACRC STRING AND GBTAIN SYM3JLIS QE?ERENCE TAldLe,
IF ERRIRS IV 3TATUS, CALL USER-DIFINEU ERROR HANOLING ROUTINE,

CALL MAPSET (MET, MAC, 8C, IST)

CALL MACR] (MAC, 0, 7LLOADL3IZ, P1, LsT
Calt MAZRI (MAC, O, 7LLULADL32, P2, [ST)
CALL MACRO (MAC, 0O» 7L5UMPRID, 23, [ST)
CALL MACRT (MAC: O» 7LUNLDIL32, P4s [ST)
CALL MAPNIST (MET, 442, IST. 1)

IF CUIST .NE. 0) CALL ERRCRS (IST)

READ INPUT, XFER TQ 503, AND EXE3UT: §IP

60428900

10 READ (1,100) (DATAL(I)» I = 1,100}
IF (20F(1)) 39, 5

5 CONTINuUG
WRITE (3,200)
WRITZ (3,500) (DATAL(I), I = 1,120}
READ (2,103) (DATA2(I)s I = 1,100)
WRITE (3,302)
WRITE (3,500) (DATA2(I)s» [= 1,120)
CALL WwRITcC (DATAL, 21(8)» 100)
CALL WRITEC (DATAZ, P2(8), 100)

CALL MAPGJ (METs MACT, ITIM » IERR, L1y 9, IST)
CALL READEC (DATA2, °4(8), 100)

WRITe (3,400)
ARITZ (3,500) (DATA2(I)y, I = 1,17M

<y

50 19 10
39 STJP
100 FORMAT (5(F1045))
200 FORMAT (lAlyaXs11HDATAL INPUT /)
300 FORMAT (/7 S5X»11HDATAZ INOUT /)
43) FORMAT (1H1,4X, THRESULTS /)
500 FORMAT (5(2¥»F1lC45))

END

SUBRJUTINE ZRRMRS (IST)

PRINT cRRIR McSSAGF IF ERRCR STATUS REIEIVED

OO

PRINT 100,157

10U FURMAT(//77 LOXe37H* %% MAF STATUS ZRIOY **% STATUS IS ,920 //1)
RETURN
END

MACRD STRING REFZIREINCe lasLe

12{D) UNUSZD MACRD STRING BUFFI¥ wIRDS

INSTRUCTIIN 3LOCK SYMBOLS

LARsL LI< REFERENCES
FINIS 2006 930017

PARAMETER 8L OCK SYv3JL3

LARZL Lac VaLUz Rt FeRENCES
SAMPLE2 0242 233009 390060 000071
S5AMPLEL 0043 230C0Q 000055 J00104
RESULT 0J¢44 320000 030045 q00C52

DATA MEMORY MAP

X FL (Savz) = 200000 X FL {TOTAL) = 230144

Y FL {(5AVE) = 000000 Y FL (TOTAL) = JJJ144

Z FL (5AvVE) = 000032 Z FL (TJTAL) = J0J144
APRAY TrPz Moo MAP A

SAMPL =] NS X 0030902

SAMPLE2 NS Y 0000090

RESULT NS z 300000

SYM3NL TA3LE LENSTH 10{(7) #IRDS

60428900 D

JATALl INPUT

2,00000
2400000
2.00000
2000000
2.00000
2.00000
2400000
2.00000
2400000
2.,00000
2400000
2000009
2.00000
2.90000
2,00000
2.00000
2.30000
2.00000
2.00000
2.90000

JATA2 INPUT

«50000
«500009
« 50000
«50000
« 30000
« 50000
+ 50000
« 30000
«30000
«50000
« 500290
«50000
+50009
«50000
+50000
«50000
« 50000
«50000
« 300039
«50300

RESULTS

100.00000
95,00000
90.00090
85.030000
80.00009
7500000
72.00000
65.00000
50,0000C
55.00000
50.02002
45.00009
40.00002
35.0C002
30. 00000
25.20000
20.00000
15.00000
10.00000

5.00000

2.00020
2.,00000
2.00009
2.00000
2400009
2400000
2400000
2.00000
2.00000
24000380
2400000
2,00000
2.00000
2.30000
2.00000
2,00009
200009
2,00009
2400000
2.00000

+50000
«53002
«50002
«500090
«50000
«503009
«50000
+50000
«50000
«50030
«50000
+9500090
«53000
«55000
«50000
+ 33900
« %0000
20000
«20000
«50000

33,30002
34,30000
39,00000
34,00000
73.00000
74400000
69.00000
54.00000
59.00002
54.00000
49.930000
44.,00000
339.00009
34.00000
23.00000
24.00000
19.00000
14.00003

9.30002

4.00600

2400000
2+0G00u
2.00000
2400000
2400000
2,00000
2.00000
2.00000
2400000
2,00000
2400000
2400000
2400000
2.00000
2.00000
2.000300
2.00000
2.00000
2400000
2000000

«30300
«53009
«53000
« 52000
« 50000
«50000
« 50000
«20000
+50000
«30000
«50209
« 50209
«30000
52002
«50000
«30000
+«50000
» 50000
«50000
«50900

98.00000
93.00000
3%.00000
83.000C0
78420002
73.00002
8R4 00000
63.,0L000
98400000
53.00000
48.00000
43,00000
33.00000
33.00000
28.00000
23423000
18.00200
13.000C0
3.02009
3.33000

2400000
2.00000
2400000
2.00090
2.00000
2400000
2400090
2.00000
2.000929
2.00000
2.,00000
2.00000
2.00090
2.00000
2.00000
2.00030
2.00000
2.00003
2.0C2230
2.00000

4

«5C0920
«50020
«50000
«50009
+ 502092
«5C000
«20039
« 50000
« 500990
«20000
«50000
«50000
«50000
«50020
«50000
«50230
«50020
«50000
«50032
«50000

97.00320
32.00222
87.00000
52.00000
77,0007
72.,00000
67.000132
52,00000
57.00200
52.00000
47.00020
42,00030
37.00000
32.00090
27.000430
22.00090
17.000030
12.00002

7.C5L0330

2400000

2400000
2.00030
2.00000
2.00000
2.00000
2.00000
2.00030
2400000
2.00000
2.00020
2.00000
2.03070
2.00000
2.00000
200000
2.00000
2.092000
2.03009
2.00000
2.00000

«50000

+ 59020
«50000
«500030
«592020
«53000
«50039
«5883°
«50020
50330
«500230
«50020
«53039
«50000
«50030
«572020
«50030
«50070
«53030
«50020

95.00030
$1.C202¢C
84.00000
81.00000
75.00020
71.000230
65.,00000
€1.03000
55.00000
51.099232
45.,00030
41.00009
36.00030
31.00000

T 26400000

21.023390
10.00020
11.0033%0

65.56GJ00

1.00000

60428900 D

PROGRAM NUMBERS

features are used first to loop within the macro
string to repeat a stack move macro 10 times.

This program demonstrates the use of common pa- Then UPM is used to redefine the beginning and
rameters established by the use of the MPARAM ending ECS addresses for a load left-justified,
call and testing and updating macro memory loca- 32-bit data transfer from ECS. UPM and TMM are
tions with the TMM and UPM macros. These then used to repeat a second stack move macro 10
times.

BROGRAM NUMBZRS (CUTPUT, TAFEZ=CUTPLT)

INTEGER MET(8), MAC(153), SYM(1%), T2(193), IB(133), IC(10:)

INTEGER PA(11), PB{11), PC(11), PCI3), PE(4),PF(u), 2G(u)

INTEGER PH(4)y PI(9), TIMI{G4)s ERR(Bw)

INTEGER STAT

CCMMCN IAC(13C), IBC(133), ICCLAGO)

LEVEL 3, IaC, IBC, ILC

STAT = ¢

e

LGCA = LOCE(IEZ)

LCCB = (LCCA ¢+ 95 + €3B) /8 *¢ +§

LCCC = LCCE(IAL)

«0CO = (LCCC + 99) /8 +8 +8

LOCG = LOCE(ICC)

LOCH = (LCCG + 123 + €33) /8 *8 +8

o

JATA PA /6LBUFFER,14018%92373,37E41777778+34341,54/

JATA P3 / SLINFUT+1,102,2278.376,1777773,40,5LSTART,SLLIMIT,1,0/

JATA PC /ELBUFFERWL4SLINPUT,1 ELBLFFEF,1,2%0413341+97/

OATA 93 /1,4LTEST,2%1/

GATA
Darta
DATA
DATA
JATA

DATA
DETA
nara

PALs)
PAtLYY
PFL3)
251
2I€83)
PI(3)

Ly

60428900 D

f-1y
£F
PG
PH
FI

Ia
I3
Ic

[T LT LI TR [}

71yl T2ST 413,27
/1s3LETART 245/
/345LLIMTIT,2%27
/71,4+LTEST 28,0/
FELBUFFER 41 410%42%370, 177777843%5/

/133%37
7133%2d8
3

72329430708

Lcce
LCCD
LCCo
LCCH
LCCG
LCCH

<)

11
2.

CALL MOVLEV (IA,IAC.107)
CALL MOVLEV (IB,IBC,1Q8)
CALL MGVLEV (IC,ICC,1032)

CALL MZTOPEN (MET, SYM, 0, G, STAT)

CALL MAPSET {(MET, MAC, 150, STAT)

CALL MALLOT (MET, E€L3UFFER, 1C0C, 2LNS, 1LY, STAT)
CALL MALLCT (2T, SLINFUT, 100, 2LNS, 1LX, STAT)
CALL MPARANM (MAC, LLTEST, Gy 1+ STAT)

CALL MPARAVM (MAC, SLSTART, LCCAs 1, STAT)

CALL MFARAM (MAC, SLLIMIT, LCCE, 1, STAT)

CALL MACRO (MACs Cy 7LLOACL32, FA, STAT)

CALL MACRC (MAC, 3, 7LLOACL32, PB, STAT)

CALL MAGCRC (MAC, 4LLCCF, 7LSTKMCVE, FC, STAT)
CALL MACRC (MAC, 2, 3LUPM, PL, STAT)

CALL MACRO (MAC, Cy 3LTMM, PZ, STAT)

CALL FACRC (MAC, 3y +LJUMP, 4LLCOP, STET)

CaLL MACRC (MAC, 3, ILUPH, PF, STAT)

CALL MACRO (MAC, 3y 3LUPM, PG, STAT)

CaLL MACRO (MAC, 3. 7LLOACL 32, F2, STAT)

CALL MACRC (MAG, SLLCOP2, 7LSTKMCVE, BC, STAT)
CALL MACRO (MAC, $. 3LUPN, PO, STAT)

CALL MACRC (MAC, f, 3LTMM, PH, STAT)

CALL MACRC (MACZ, 0y 4LJUMP, SLLCOF2, STAT)
CALL MACPC (MACe €y 7LUNLCL32, FI, STAT)

SALL MACRGC (4£Cs 3y ILENC, 3, STAT)

CALL MAPNCGC (MET, MAC, STAT, 1)

CALL MAPGC (MET, MAC, TIF, ERR, 1, 508, STAT, ;)

CALL MCVLEV (ICC, IC, 13{)

00 17 K = 1,101,3

IF C(ICIX) .NE, 7L003C92020C08) GC TO 29
IK = Kb

FRINT 20, (IC(I),I=K,IK)

FCRMAT t5022)

CALL FZIMARK (16M TEST SUCCESSFLL)
STCP

PALST *TZIST FRILEC:2

£ND

60428900 D

MACRO STRING REFERENCE TABLE

26 (0) UNUSED PMACRO STRING BUFFER WCRCS

INSTRUCTICN BLOCK SYMBCLS

LABEL toc REFERENCES
FINIS 2006 320043

Lcep G213 cgocez
LooP2 0021 70042

PARAMETER BLOCK SYM30LS

LABEL Loc VaLUE REFERENCES

INFUT 2a7e 52030679 265121 ggcLaz L0C162
BUFFER 877 ¢l06080 302102 20117 0GJ122
LIFIT J22 033273 103142 00314¢ 060294
START %223 C231 44 1301461 000157 602233
TEST $224 gigsgs 303111 033114 0512

DATA MEMORY MAF

X FL (SAVE) = 2.74.0 X FL (TCTAL) = 200144

Y FL (SAVE) = 30063 Y FL (TCTAL) = 0351wk

Z FL (SAVE) = 20L320 Z FL (TCTAL) = 862303
AFPAY TYPE mzw MAP 24

BUFFER NS Y 3638373

INFUT NS X 20839¢017¢

SYM33L TAQLZ LSNGTH #(Z) WORDS

60428900 D

002174
€0J%1e61 3021¢€5

£3315¢

603207

PROGRAM FOURIER

This program demonstrates use of the real fast Fourier transform macro,

PROGRAM FOQURIER(QUTPUT=513, TARES)
c (RIGINAL CALCULATION ARRAYS
COMMCON TRAC(1325), SINC(1024), RESUL(1026), RESUK{1026)
INTEGER ROW
LOGICAL ComMP

c ECS ARRAYS FCR MAP DATA
COMMCN /IECS/ INPR{112S), SINT(1024)
REAL INPR

LEVEL 3, IMFR, SINT
COMMGON /CECS/ CUTR{1326), OUTS(1026)
LEVEL 3, OUTR, QUTS
c MAP RENUIRED ARRAYS
INTEGER MET(8), SYME(3I0), MAC(20G)
INTEGER LOT(11), MVOU(11)y MVE(11), LCS(11), RFT(6), MYR(11l),
1 MVIti1), UNRI(G)
INTEGER STAT, ETAB(6H)
DATA LOT/QLLCAO91"G'16095'608'1777778939‘0.‘0.1v3/
DATA HVO/‘Cv2,3'31“LIHAG'1yC’CO'G’3'5/
J4ATA MVE/G4LLCAC 929G 930 4LREALy19C 90y =Cy0,C7
DATE LDS/3LSIR911'C»IGQkEvEGBv1777778'Uv'0v‘3o190/
0ATA RET/GLREAL yolLIMAG =59 3LSINS3LCOS,17
DATA MVR/GLREAL 9190909 LLOUMP,24C4Cy=Cy04y0/
DATA MVI/ZGLIMACYL140909~0,2y0209=04924C7
DATA UNR/GLDUMF 31 9-041404B97720E41777778 48y ~de =37
FROGRAM ASSCCIATED PARAMETERS
JATA L=v/710/
OATA PI/2.1415¢2557
c STATEMINT FUNCTION
LCCBC(TIAI=LCCE(IA) /7 8 * 8 + 8
INITIALIZE THE TRACE ARRAYS
LIM=2 ®» £y
PERFORM THE MAF REZLATEC LALLS
CALL MCTOFEN(MET, SYMB, G, 0, STAT)
CALL MAPSET(MET, MAC, 250, STAT)
CALL MALLCTI(MET, 4LRZAL, LIM#1, ZLNS. 1LX, STAT)
CALL “ALLOT(MET, 4LIMAG, LIMs1, 2LNS, 1LY, 3TAT)
CALL PALLCY(MET, 3LSIN, LTIN®*2, 2L10S. L2, STAT)
CALL MALLGCT(MET, +LLCAC, LIMs2, 2LNS, 1L2Z, STAT)

[¢]

(9]

(2]

4-10 60428900 D

CALL MALLCT(MET, oLCUMP, LIM#¢2, 2LNS, 1LZ, STAT)
CALL MALLOT(METy 4LREL2, LIM#1, 2LNS, 1iLX, STAT)
CALL MALLGT(MET, 4LIMG2, LIM#1, 2LNS, 1LY, STAT)
CALL MEQUIVUMET, 3LCOS, LIM/2, ILSIN, LIM/4, STAT)
LOT(3)=LIM

LOT(8)=LOCE(INFR)

LCT(9)=LCCB (INFRILIM))

CALL MACPO(MAC, J, 7LLCACL32, LCT, STAT)
MVC(1)=4LLCAC L OR, 2

MVC(3)=LIM / 2

CALL MACRO(MAC, 7, 7LSTKMCVZI, MVO, STAT)
MVCIS)=LLIMG2

CALL PMACRC(MAC, 0, 7LSTKNMCVE, MVC, STAT)
MVE(9)=LINM 7 2

CALL MACRO(MAC, 34 7LSTKMCVE, MVE, STAT)
MVE(S)=LLREL2

CALL MACRC(MAC, 0, 7LSTKMCVE, MVE, STAT)
LOS(3)=LIM/2 + LIM/G

LDS(8)=LCCEISINT

LOS(9)=LOCBISINT(LIN/Z2 ¢ LIM/&))

CALL MACRC(MAC, 1, 7LLCAGL3I2, LCS, STAT)
RFT(3)=LEV

CALL MACRC{MAC, J, 7LRZIALFFT, RFT, STAT)
RFT(1)=4LREL?2

RFT(2)=4LIMG2

CALL MACRC(MAC, Jo+ 7LRZALFFT, RFT, 3TAT)
MVR(G)I=LIM/2 + 1

CALL MACRO(MAC, S, 7LSTKNMCVE, MVR, STAT)
PVI(S)=LLOUMF ,OR. 2

MVI(9)=LIM/2 +

CALL MACRO(MAC, 3, 7LSTKMCVE, MVI, STAT)
UNR(3I=LIM + 2

UNR(8)sLCCEICLTR)

UNR(I)=LCCBICLTRILIM ¢ 2))

CALL MACRCIMACL, 3, 7LUNLLL32, UNFP, STAT)
MVYR(1)=4LREL2

CALL MACRCIMAC, 0, 7LSTKMCVE, MVR, STAT)
MVYICL)=4LIrG2

60428900 D

(9]

<

23

N

LI]

CALL MACRO(MAC, J, 7LSTKMCVE, MvVvI, STAT)
UNR{8)=LCCELCLTS)

UNR(9)=LCCB(QUTSILIM ¢+ 2))

CALL MACRO(MAC, 04 7LUNLCL32, UNR, STAT)
CALL MACRO(MAC, 0, 3LEND, 3, STAT)

CALL MAPNQOGO(MET, MAC, STAT, REF)
GENERATE SIN / COS TABLE

A=2, ®* P1 / LIN

00 23 I=1, LIN

SINC(I)=SIN{(I-1) *)

CCNTINUE
CALL WRITEC{SINC, SINT, LIM)
RON=3
READ THE TEST CATA
: CONTINUE
ROW=RCW + 1
DO 35 I=1,LINM
R=ROW

TRAC(IVI=RANF(R)

MCVE CATA TO ECS

CALL WRITECUTRAC, INPR, LIM)
FIRE UP THE MaP

CALL MAPGOAMET, MAC, 7LNCTASLE, ETA3, 1, 53, STAT,

136003023764000529)
PRINT NON=-ZERC ERRGR TAGBLE ENTRIES
FRINT 2, RCW

FORMAT(®*INCN-2ERQ ERRCR TABLE = RChw %,12,/)

0C &% I=t, 64

IFLETABCI) «NE. 1) PRINT 23, (I-1), ZTAG(I)

FORMAT(1X402+2X,016)

CONTINUE

CHECK THE QATa

CALL RZAJECU(RESUL, CUTR, LIM+2)
CALL READEC(RESUK, CLTS, LIM+2)
LST=LIM + 2

CCMP= ,TRUE.

00 53 I=t1, LST

IF(RESUL(I) .20, RISUKII)) GC TC 53
PRINT 4y I, RESULII), RESUKII)

FORMAT(® COMPARISON FAILURE = *43J4,212X,£16,8))

CCMP= . FALSE.

CONTINUE

IFC.NCT,CCMPY CALL MDUMP(1, 1, 1, 1)
IF{.N.COMFY PAUSE 2T:ST FAILED2
CALL PIRLSE

TEST IF CYCLE CCMPLETECL

IF(RCW .LTe 24) GG TO 2¢

GET QUT

CALL PCLOSEINET, STAT)

EN2

604289500 D

60428900 D

MACRO STRING REFERENCE TA3LE

13(C) UNUSEL MACRO STRING BUFFEFR WORLS

INSTRUCTION BLCCK SYMBCLS

LA3ZL
FIMIS

LOC
233e

REFERENCES

Gads3

PARAMETER ELOCK SYMBOLS

LABEL
LoAD
LCAD
CGs
SIN
REAL
IMAG
REL2
JuMP
IMG2
gume

DATA MEXORY M4P

X FL (SAvVE
Y FL (Save

7 FL (Save

ARRAY
RE AL
Irag
SIN
LOAD
CuMpP
QEL2
InG2
ces

LoC
I%e1
062
70€3
B I-TH
T0ES
Z0eg
067
ce7¢
271
2072

)

]

TYPE

NS
NS
N3
NS
NS
NS
NE

vaLus REFERENCES
6123912 100248 3302561
1ega2 3gc2zy 032233 681274
$23633 162175 3126233
£idez23 30317% 3302452 §0s29¢
8532394 102138 305177 085237
233332 36143 33020¢ GCo2¢es
032601 105117 335171 603224
G2eC75 s03112 035147
0.20.1 363134 00172 002252
Gis304 3955712 3321212 6086132
3oocl? X FL (TCTAL) = fQ«3G2
30¢223 Y FL (TCTAL) = 1G45L2
celCis Z FL (TCYAL) = 2CECLE
MEwV ¥AP Ra
x 309¢C3¢
Y 3330820
2 2330°¢
4 i32¢c2
z 1 1% B
X 182371
Y 152601
z 39246°¢C

SYMAOL TASLE LENGTW 2780) WORDS

gC2162

COMMANDS/MESSAGES

This section describes MAP III system operator
commands and console, dayfile, and error log mes~
sages provided by MSSI.

OPERATOR COMMANDS

MAPINIT.

n. XMAPINIT. (NOS/BE)
X.MAPINIT. (NOS)

Initializes MAP for user programs running on this
computer, provided that MAP is operational and
turned on in equipment status table (EST), and that
MAP PP driver (MP3) is not already executing in
this computer.

MAP,IDLE.

Disables MSAM calls from user programs not hold-
ing schedule table entries. Programs holding
schedule table entries run to completion. After
MAP,IDLE., MSAM responds to METOPEN calls
with MET code/status 22 18 (requested equipment
not available).

MAP,ABORT.

Causes central processor (CP) monitor to ignore

OPEN and EXECUTE functions, aborts user pro-

grams having schedule table entries for this com-
puter, and turns MAP off in EST.

MAP,CHECKPOINT. ¥

Suspends processing of MAP jobs while leaving
MAP logically on. MAP processing resumes when
operator issues MAPINIT command.

MAP,CLEAR. Tt

Clears active/inactive schedule table entries for
other computer and clears MAP bits in ECS flag
register. If macro string from other computer is
executing, MAP, CLEAR. terminates this execution.

MAP NODUMP.

Clears ECS dump interlock word. Since interlock
word normally clears during end-of-job processing,
use MAP, NODUMP. only when JOb that set interlock
word is hung.

TNOS only.
tfDual computer installation, NOS/BE only.

60428900 D

MAP,UNLOCK.
Clears lock word in ECS. MAP, UNLOCK. may be

required if an on-line diagnostic hangs after making
MLOCK call.

MAP,DIAG.

Schedules an on-line diagnostic for immediate’
execution.

MAP,DIAG ,XXXXX.

Sets an on-line diagnostic execution interval to
XXXXXg seconds.

MAP,DOWN.
Identifies MAP as nonoperational. After
MAP, DOWN., MSAM responds to MAPGO calls
by sending
MAP DOWN. TYPE GO OR DROP.
to B display. MSSI returns MET code/status 217

(MAP down) to jobs that had active schedule table
entries when operator issued MAP, DOWN,

MAP,UP.

Identifies MAP as again being operational.

MSSI CONSOLE MESSAGES

The following messages may appear on the B dis-
play, and in some cases, in user job dayfiles.
Unless otherwise indicated, notify the system ana-
lyst when one of these messages appears.

Console Message/Description Routine/Command

BAD CHANNEL XFER LOAD- MPI/MAPINIT

ING CONTROL MEMORY

Checkword error occurred or
MAP did not respond after
MPI loaded control and sub-
control memory from PP
channel,

Console Message/Description

Routine/Command

Console Message/Description

Routine/Command

CANT LOAD MAPLIB

Controlware not properly
structured.

DRIVER REQUIRED FOR
MAP CLEARTY

MAP, CLEAR. command
entered while MAP not in
operation.

ECS DUMP INTERLOCK WAS
job/idtt :

Displays interlock word just
cleared.

job Job name.

id 0 - access A
mainframe.

1 - access B
mainframe.

ECS LOCK INTERLOCK WAS
job/id ft

Displays interlock word just
cleared.

job Job name,

id 0 - access A
mainframe.

1 - access B
mainframe.

FATAL MAP ERRORS
LOADING CONTROLWARE

Error detected in MAP status
word during default control-
ware load.

FULL INITIALIZATION

This computer controls MAP
PP channel interface. MSSI
has initialized ECS common
area and loaded MAP with de-
fault controlware. No action
required.

INTERLOCK = job/id/jdt t

Displays interlock word just
cleared.
job Job name.

id 0 - access A
mainframe.

1 - access B
mainframe

jdt Job descriptor
table ordinal.

TNOS/BE only.
1 NOS only.

MAPINIT/
MAPINIT

IMP/MAP, CLEAR.

1MP/
MAP,NODUMP.

1IMP/MAP/
UNLOCK.

MPI/MAPINIT

MPI/MAPINIT

1MP/

MAP, NODUMP.
1MP/

MAP, UNLOCK.

MAP CHANNEL ALREADY
RESERVED

MAPINIT command issued
while MP3 active.

MAP DOWNT

MSSI declared MAP non-
operational. Notify cus-
tomer engineer.

MAP DOWN. TYPE GO OR
DROP. 1

MSAM determined that MAP
is nonoperational and sus-
pended processing. To re-
sume processing, verify

that MAP is operational, type
MAP, UP., and type n.GO.
To terminate processing,
type n. DROP.

MAP DUMP I/L - CYB (id)
(jdt)t

MAP DUMP IL - job id ft

MP3 is waiting for dis-
played job to clear ECS dump
interlock word. Type
MAP,NODUMP. if job
appears hung.

id 0 - access A
mainframe.

1 - access B
mainframe.

jdt Job descriptor
table ordinal.

job Job name.

MAP HUNG, STATUS
RETURN ERROR

MAP returned incomplete
status or did not respond to
status function. Notify cus-
tomer engineer.

MAP INITIALIZATION
REQUIRED FOR ABORT

MAP, ABORT. command
entered while MAP was not
initialized.

MAP INTERLOCK
CP monitor cannot modify

ECS flag register. Issue
MAP, CLEAR. command.

MPI/MAPINIT

CP monitor

MSAM

MP3

MPI

1IMP/MAP, ABORT.

CP Monitor

60428900 D

Console Message/Description

Routine/Command

Console Message/Description

Routine/Command

MAP IS DISABLED OR NOT
READYTY

Status received from MAP
during initialization does not
have ready bit set.

MAP IS HUNG OR DOWN

MAP does not respond or
MAP returned error status
in response to MAPINIT.
command. Notify customer
engineer.

MAP IS NOT AVAILABLE

CP monitor returned re-
quested equipment not avail-
able status during initializa-
tion. Check MAP status in
EST.

MAP IS OFF

MAP is turned off in EST.
Turn MAP on and reenter
MAPINIT command.

MAP JOBS ARE
CHECKPOINTED t

MAP jobs have been check-
pointed in preparation for
MSSI or system recovery.

MAP NOT AVAILABLE.
TYPE GO OR DROP.

MSAM is attempting to open
schedule table entry while
MAP is turned off in EST, or
MAP has not been initialized
via MAPINIT command.

Turn on MAP in EST and type
n.GO, or enter MAPINIT and
type n. GO, or type n. DROP.

MAPGO(S) ISSUED AFTER
MAP EXECUTION ERR

MAPGO call issued while
associated MET contained
code/status 321 (fatal execu-
tion error).

MAPIII NOT INITIALIZEDTY
MAP, ... command entered
while MAP was not in
operation.

MAPINIT FIELD LENGTH
OUT OF RANGE

MAPINIT object code not
properly structured.

T NOS only.
TNOS/BE only.

60428900 D

MPI/MAPINIT

MPI/MAPINIT

MAPINIT/
MAPINIT

MPI/MAPINIT

IMP/MAP,
CHECKPOINT.
or

CHECKPOINT
SYSTEM

MSAM

MSAM

1MP

MPI/MAPINIT

MAP3-ECS I/O ERRORTT

ECS failure occurred while
MP3 was attempting to read
or write. Notify customer
engineer.

MP3 ACTIVE

MAPINIT command entered
while MAP was already
active.

MP3 ACTIVE BEFORE
FUNCT XXXX

MP3 found PP channel
already active before issuing
last function (XXXX). Notify
customer engineer.

MP3 CHECKWORD ERR
XXXX

MP3 received checkword
error status from MAP.

XXXX was last function
issued by MP3. Notify
customer engineer.

MP3 EMPTY BEFORE
INPUT XXXX

MP3 found PP channel
empty before attempting
input.

XXXX was last function
issued by MP3. Notify
customer engineer.

MP3 FATAL MAP/SYSTEM
ERR XXXX

MAP unable to complete
macro siring normally for
reason displayed in previous
dayfile message.

XXXX was last function
issued by MP3. Notify
customer engineer.

MP3 FULL AFTER OUTPUT
XXXX

MAP failed to accept last
word output to PP channel.

XXXX was last function
issued by MP3. Notify
customer engineer.

CP Monitor

MPI/MAPINIT

MP3

MP3

MP3

MP3

MP3

Console Message/Description Routine/Command Console Message/Description Routine/Command
MP3 FULL BEFORE MP3 NO DDPt MP3
OUTPUT XXXX :
Distributive data path (DDP)
MP3 found PP channel device not defined in EST or
already full before output. logically off. No dump
XXXX was last function produced.
Lemned oY gjlgfr;e otify NO MAP ENTRY IN EST MPI/MAPINIT
MP3 FUNCTION BUSY MP3 MAP not defined in EST.
TIMEOUT XXXX NO MAP EQUIPMENT 1MP/MAP, IDLE.
Function busy bit failed to PRESENT
drop from MAP status. MAP not defined in EST.
XXXX was last function
issued by MP3. Notify NOT ENOUGH ECS FOR MAPINIT/
customer engineer, MAP TABLESY MAPINIT
MP3 INPUT CHECKWORD MP3 ECS common area too small
ERROR XXXX for MAP tables. Check
deadstart procedure.
MP3 detected invalid input '
checkword for on-line diag- PARTIAL INITIALIZATION MPI/MAPINIT
nostic PP channel transfer.
. Other computer controls
f(s}ggé vgash%al.j%t fugg?}m MAP PP channel interface.
o tomey engineer y MSSI initialized only sched-
r engineer. ule table in ECS and did
not reload MAP with control-
MF?SNNC(')I’?(%\ISP)?}I{\I}%IE MPp3 ware. No action required.
PP channel failed to go in- RECOVERY/FULL MPI/MAPINIT
active after MP3 issued INITIALIZATION 11
function XXXX to MAP. o
Notify customer engineer. MSSI initialized.
N RECOVERY/PARTIAL MPI/MAPINIT
M}]?gx’l;gMEOUT ON INPUT MP3 INITIA LIZATION t
MP3 found PP channel in- MSSI recovered from ECS.
achive after IAM (block in- REQUESTED CHANNEL NOT MPI/MAPINIT'
P . ASSIGNED - TRY AGAIN
XXXX was last function
issued by MP3. Notify CP monitor error occurred
customer engineer. while trying to reserve MAP
PP channel. Try again.
MP3 TIMEOUT ON OUTPUT MP3
XXXX WAIT ACTIVE STE 1MP/MAP, ABORT.
MP3 found channel inactive MAP, ABORT. command
after OAM (block output) waiting for all schedule
instruction. table entries to become
?{XXX was last function inactive.
Lssued by Z‘};i; cerotify WAITING FOR LOCKED MAP MSAM
MAP locked by another on-
NO COMMON PARTITION MAPINIT/ . : S .
FOUND IN ECS PARTITION MAPINIT line diagnostic job when this

TABLET

MAPINIT did not find common
ECS partition named COMMON.
Check deadstart procedure.

tNOS/BE only.
1T NOS only.

job issued MLOCK call.
MAP will be locked for this
job when current reservation
released.

60428900 D

Console Message/Description

Routine/Command

WAITING FOR MAP 1MP
ACTIVITY Yt

User program terminated be-
fore MAP completed process-
ing associated macro string.
No operator action required.

WAITING FOR SCHEDULE
TABLE ENTRY MSAM

Schedule table full when

MSAM issued OPEN function.

MSAM periodically tries

again. No operator action

required.

1SO--SWAPOUT SUSPENDED
BY MAP ACTIVITY - TRY
LATERT

Operator attempted to swap
out MAP job via n. LOCKOUT.
command. Swapout has not
occurred because job is cur-
rently using MAP or has
locked MAP. If necessary

to swap out job, operator
must retry swapout - later
(system will not automatically
retry swapout).

MSSI DAYFILE MESSAGES

Dayfile Message/Description

DDP ERROR, NO DUMP

DDP error occurred during MAP dump.
No dump produced.

DPxx, Cyy, PE, RNR, S0000, Azzzzzzz {f

DDP error occurred while writing
MAP dump buffer to ECS.

XX DDP EST ordinal.
vy DDP channel number.

ECS buffer address
being written into.

ZZZZ2222

ERROR IN LIBRARY ECS XFER
Error occurred while transferring
controlware from central memory
to ECS. Notify system analyst.
ERROR IN LIBRARY LOAD

MSAM detected error while loading
controlware. Notify system analyst.

TNOS/BE only.
T NOS only.

60428900 D

180/n. LOCKOUT

Routine

MP3

MP3

MSAM

MSAM

Dayfile Message/Description

FATAL MAP ERROR, MACRO = nn

MP3 detected fatal error during macro
string execution.

JOB ABORTED. ERRORS DETECTED
BY MSAM.-

MSAM Tatal error limit exceeded.

JOB ABORTED. MET CODE/
STATUS = nnn

MET contains code/status that pre-
cludes further processing.

MAP DOWN. TYPE GO OR DROP. T

MSAM determined that MAP is non-
operational and suspended processing.
To resume processing, verify that MAP
is operational, type MAP, UP., and type
n.GO. To terminate processing, type
n. DROP.

MAP NOT AVAILABLE. TYPE GO OR
DROP.

MSAM attempting to open schedule table
entry while MAP turned off in EST, or
MAP has not been initialized via
MAPINIT command. Turn on MAP in
EST and type n. GO, or enter MAPINIT
and type N. GO, or type n.DROP.

MAP TIME LIMIT

Macro string execution time exceeded
limit specified by MAPGO call or in-
stallation parameter.

MAPGO(S) ISSUED AFTER MAP
EXECUTION ERR

MAPGO call issued while associated
MET contained code/status 321 (fatal
execution error).

MET FIELD O.R

MET central memory address out of
range.

MP3 ACTIVE BEFORE FUNCT XXXX

MP3 found PP channel already active
before issuing last function (XXXX).

MP3 BAD CHANNEL TRANSFER
REQUEST

MP3 received unrecognizable PP chan-
nel transfer request from an on-line
diagnostic.

Routine

MP3

MSAM

MSAM

MSAM

MSAM

MP3

MSAM

MP3

MP3

MP3

Dayfile Message/Description

MP3 CHECKWORD ERR XXXX

MP3 received checkword error status
from MAP.

XXXX was last function issued by MP3.
MP3 EMPTY BEFORE INPUT XXXX
MP3 found PP channel empty before
attempting input.

XXXX was last function isgsued by MP3,

MP3 FATAL MAP/SYSTEM ERR XXXX

MAP unable to complete macro string
normally for reason displayed in pre-
vious dayfile message.

XXXX was last function issued by MP3.
MP3 FULL AFTER OUTPUT XXXX

MAP failed to accept last word output
to PP channel.

XXXX was last function issued by MP3.
MP3 FULL BEFORE OUTPUT XXXX

MP3 found PP channel already full
before output.

XXXX was last function issued by MP3.
MP3 FUNCTION BUSY TIMEOUT XXXX

Function busy bit failed to drop from
MAP status.
XXXX was last function issued by MP3.

MP3 INPUT CHECKWORD ERROR
XXXX

MP3 detected invalid input checkword
for an on-line diagnostic PP channel
transfer.

XXXX was last function issued by MP3.
MP3 NO RESPONSE FUNCTION XXXX

PP channel failed to go inactive after
MP3 issued function xxxx to MAP.

MP3 TIMEOUT ON INPUT XXXX

MP3 found PP channel inactive after
IAM (block input) instruction.

XXXX was last function issued by MP3.
MP3 TIMEOUT ON OUTPUT XXXX

MP3 found PP channel inactive after
OAM (block output) instruction.

XXXX was last function issued by MP3.

TNOS/BE only.
T NOS only.

Routine

MP3

MP3

MP3

MP3

MP3

MP3

MP3

MP3

MP3

MP3

Dayfile Message/Description

MSAM ARGUMENT COUNT ERROR
DETECTED BY xxxxxxx
CALLED FROM yyyyyyy LINE zzzz

MSAM routine call had incorrect num-
ber of parameters.

XXXXXXX Name of routine that
detected error.

YYYYyYy Name of routine that
called xxxxxxX.

2222 Call line number on

YYYYyyy program
listing.

MSAM STATUS WORD = XXXXXXXXXX
YYYYyyy

Issued when MSAM aborts job.

XXxXxxxxxx MSAM status word.
YYYYyyy Macro or MSAM rou-
tine that triggered
abort.
NO DDPT

DDP not defined in EST or logically
off. No dump produced. :

OPERATOR MAP ABORT 1t
Operator aborted MAP III system

thereby aborting jobs with pending
MAP requests.

MSSI ERROR LOG MESSAGES 1t

Routine

MSAM

MSAM

MP3

1MP

When one of these messages appears, notify the

customer engineer.

Error Log Message/Description Routine
DPxx, Cyy, PE.RNR.SOOOO,AZzzzzzzﬁ' MP3
DDP error occurred while writing MAP
dump buffer to ECS.

XX DDP EST ordinal.

Yy DDP PP channel number.

zzzzzzz ECS buffer address being
written into.
‘
60428900 D

Error Log Message/Description Routine Error Log Message/Description Routine

MPxx, Cyy, 13, EC, AAAA,BBBB, CCCC, MP3 AAAA MAP status word O.
DDDD

MPxx, Cyy, 2S, EC, EEEE, FFFF, GGGG, MP3 BBBB MAP status word 1.
HHHH

CCCC MAP status word 2.
MAP hardware error.
DDDD MAP status word 3.

XX MAP EST ordinal.
EEEE MAP status word 4.
vy MAP PP channel number,
FFFF MAP status word 5.
1S Signifies this is first line
of two-line message. GGGG MAP status word 6.
28 S-ignifies this is second HHHH MAP status word 7.
line of two-line message.
EC MP3 error code. MSS!I CERFILE ENTRY FORMATT
1 No response to

i Figure 5-1 shows the format of the CERFILE entry
function code. made by MSSI for some MAP errors.
2 Fatal system/

MAP error. Error codes for word 3, bits 48 through 53, and

word 4, bits 48 through 59, are defined as follows:

3 Checkword error.
PP channel failed Error Code Definition
to go empty. - -
5 Deadman timeout 1 No response to function.
on input. 2 Fatal MAP/system error.
6 Deadman timeout 3 Checkword error.
on output. 4 Channel full after output.
K PP channel full be- :
fore output. 5 Timeout on channel output.
8 PP channel active 6 Timeout on channel input.
before function. 7 Channel full before output.
9 Timeout exceeded 8 Channel active before function.
waiting for function ; ;
busy to clear. 9 Function busy timeout.
10

10 PP channel empty Channel empty before mput..

before input.

TNOS/BE only.

60428900 D 5-7

WORD |59 . 0
1 SYSTEM-SUPPLIED TIME
59 _)
2 SYSTEM-SUPPLIED JOB NAME
69 54353 48147 42441 36§35 30429]
3 374 ERROR EST PP CHANNEL' RESERVED
CODE ORDINAL | NUMBER | NUMBER
59 aafa7 £ 28]z 2 MACRO o
a ERROR 'RESERV PRIMARY PROGRAMMED MEMORY
CODE ED STATUS STATUS STATUS
59 4847 36}35 24123 122111 4]
5 CMOE’:J:',?t " ARITHMETIC ARITHMETIC ARITHMETIC MEMORY
STATUS) ERRORS 1 ERRORS 2 ERRORS 3 ERRORS
59 . z2in [}
6 RESERVED UNUSED
[5s , 0
7 UNUSED
59 1)
8 UNUSED

Figure 5-1. MAP CERFILE Entry Format

60428900 D

MACRO PARAMETERS A

L

This appendix describes common types of macro
parameters, describes the sine/cosine table used
with FFT macros, and provides a parameter table
for each macro that requires parameters.

PARAMETER DESCRIPTIONS

The following paragraphs describe types of param-
eters used with more than one macro.

FIRST WORD ADDRESS (FWA)

Specifies MAP data storage address to contain first
element of array.

INCREMENT FACTOR {IF)

Determines spacing of array elements in MAP
data storage. First element has address FWA and
ith element (i=0,1,2,...) has address FWA+*(IF).
IF must be an integer. Figure A-1 shows array
loaded into data storage with IF set to +2.

1 Low addresses
Initial FWA-1
array value ——P7777 /////////////////5‘-'---;\‘\V)‘/V'ﬁr1
Next e T A A<+— F W A+2
array value) FWA+3
A A g‘% ﬁig
Succeeding L /A FWA+6
array values . FWA+7
i ‘_—mﬁﬁ;

‘ High addresses

Figure A-1, +2 Increment Factor

60428900 D

OFFSET (OFF)

Number of data storage locations between first ele-
ment of array and first element of array to be
processed.

FORMAT CONVERSION PARAMETERS:

Numerical conversion and assembly/disassembly
units within MAP convert various external data for-
mats to the MAP internal data format, and vice
versa. These units extract the following four words
from the parameters accompanying an input/output
macro and use these words to perform the specified
conversion. Table A-1 lists format conversion
parameter values for several external formats.

Numerical Conversion Control (NCC} Word

Identifies external format, specifies conversion
direction, and provides for sign inversion or con-
version disable. Figure A-2 shows bit fields in
NCC word.

Radix Point Adjust (RPA) Word

Contains 12-bit twos complement number that is
added to unbiased external exponent to adjust
floating-point formats having radix point other than
immediately to left of mantissa. RPA word can
also be used to enable MAP to process numbers
exceeding allowable MAP range.

RPA word format is as follows:

17 12 11 0
Junused | RPA value |

Appendix C contains instructions for using RPA
word.

TABLE A-1. FORMAT CONVERSION PARAMETERS

Value @
External NCC RPA Word 1 Word 2
Format Macro Word Word Mask Mask
CDC CYBER/ LOADL32 001604 0(222()50 177777 0
6000 32-bit
floating point UNLDL32 001404 007720 177777 0
(-48) [
CDC CYBER/ @ LOADP30 @ 001604 032(8))60 177776 0
6000 30-bit
floating point UNLDP30 001404 007720 177777 0
(-48)
CDC CYBER/ LOADR32 000237 O(Zg(l):;ﬂ 177777 0
6000 32-bit
fixed point UNLDR32 000037 000037 177777 0
(31)
CDC CYBER/ @ @
6000 30-bit UNLDP30 000037 000037 377777 0
fixed point (31)
MAP format: LOADP32 000340 0 1777717 0
full 32-bit UNLDP32 000140 0 177777 0
@ Decimal values are in parentheses; others are octal.
@ Uses most significant 32 bits of 60-bit floating-point word (12-bit exponent, 20-bit
coefficient). :
@ Numbers éxceeding allowable MAP range (refer to section 1) cause numerical con-
version unit overflow errors.
(® Packs most significant 30 bits (12-bit exponent, 18-bit coefficient) of each of two
60-bit floating-point words into one 60-bit word.
® Allows sign fill in lower 2 bits.
@ Expects 32-bit signed integer in lower 32 bits of 60-bit word.
@ Packs two 30-bit signed integers into one 60-bit word.
MAP does not accept 30-bit packed fixed-point data.
® Bit 29 is highest-order R3 bit transferred to ECS.

60428900 D

11109 8 76 54 32

0

|

|

| 1]

Unused

-

Invert Internal Sign
(Internal - External only)

0
1

Same sign
Invert sign

Exponent Representation

0
1

Twos complement
Ones complement

Exponent Bias

T

Exponent Width Code (EWC)

000 = 7-bit exponent

001 = 8-bit exponent

010 = 9-bit exponent

011 = 10-bit exponent

100 = 11-bit exponent

101 = Not used

110 = 11-bit exponent 30-bit
format (for internal -
external only)

111 = Fixed point

Exponent Power Code (EPC)
00 = Exponent power of 2

01 = Exponent power of 4
10 = Exponent power of 16
11 = Fixed point

Number Representation

00 = Ones complement number
01 = Twos complement number
10 = Sign and magnitude
11 = Disable conversion

Conversion Direction

Unbiased exponent

0
1 = Biased exponent

Figure A-2,

Assembly/Disassembly (A/D) Mask Words

Control register R3 in MAP A/D unit. R3 is 72-bit
left-shift register used for buffering and format
modification during MAP input/output operations.
Figure A-3 shows A/D mask words,

For mask bits 0 through 15, mask bit n controls
R3 bits 2n and 2n+1. Rules for bits 0 through 15

are:

° Each 1 in word 2 mask enters 0's in con-
trolled R3 bit positions.

L Each 0 in word 2 mask lets corresponding
word 1 mask control R3 entry.

® FEach 1in word 1 mask enters data in con-
trolled R3 bit positions, providing corre-
sponding word 2 mask bit is 0,

® FEach 0 in word 1 mask enters sign in con-

trolled R3 bit position, providing corre-

sponding word 2 mask bit is 0. Sign is de-
fined as higher-order bit of 2 R3 bits con-
trolled by highest-order 1 in word 1 mask.

60428900 D

0
1

Internal - external
External - internal

"won

NCC Word

Bits 16 and 17 of each mask, when taken together,
form a 4-bit, half-pad count. MAP doubles this
count to determine number of bit positions between
R3 bit 31 and highest-order R3 bit {(between bits 1
and 31) to be transferred to ECS.

DESTINATION LIST PARAMETERS

IOADP32 and LOADL32 each can simultaneously
transfer data to multiple MAP data storage buffers
called destination lists. Parameters specify num-
ber of destination lists, first location of first list,
spacing of data words in lists, and spacing of lists
in data storage. Figure A-4 shows destination list
parameters for a three-list load. For a single-list
load, list count and list increment factor parameter
values should be 1 and 0, respectively.

17 16 15 0

L | |

17 16 15

L |
> t

| _Jo

Figure A-3.

Decimal
Order Parameter Value
1 First list FWA 101
2 Data increment factor 1
3 Data word. count 100
10 List count ’ .3
11 List increment factor 500

Word 1 mask

Data/sign select bits
Lower two bits of half pad count

Word 2 mask

Zero-fill/enable word 1 mask bits
Upper two bits of half pad count

A/D Mask Words

0
%X K 101
Destination
kN 200 list 1
X
601
Destination
700 list 2
1101
Destination
1200 list 3
- L
Data
storage
addresses
(decimal)

Figure A-4. Destination List Parameters

SINE/COSINE TABLES

Each FFT macro requires both a sine table and a
cosine table to be resident together in one section
of MAP data storage. The tables must include
sines/cosines for the angles:
0,A,2A,34A,..., #A
A 27/N

N Number of points in series to be
transferred

Also, N is 2" where n is the level count parameter
for each FFT macro.

A-4

The user can conserve MAP data storage by
taking advantage of the sine/cosine symmetry »
[cos(a)=sin(a+7/2}] to overlap the last half of the
sine table and the first half of the cosine table as
shown in figure A-5.

Tables for large series can be used for smaller
series by increasing the sine/cosine increment
factor. For example, tables used for a 2048-point
transform with an increment factor of +1 can be
used for a 1024-point transform by setting the in-
crement factor to +2.

60428900 D

FWA of sine table—+| 0=sin(0)

1=sin(7 /2)=cos(0) FWA of cosine table

Overlap

sin(7r -A)
0=sin(')=cos(M/2)

'cos(n'-A)

Figure A-5. Sine/Cosine Table Overlap

PARAMETER TABLES

Tables A-2 through A-14 define parameters for the macros described in section 3.

TABLE A-2. UPM/TMM PARAMETERS

Order Parameter . Description

Notes

1 N UPM Number of macro memory locations to be
changed.

TMM Must be 1,

2 M address UPM First macro memory location to be changed.
TMM Macro memory location to be tested.

3 Value UPM Update value.
TMM Test value.
4 UPM flag 0 Replace contents of each location to be
changed with update value.
Non-~ Add update value to contents of each location
zero to be changed.

@ UPM only; unused for TMM.

60428900 D

TABLE A-3. LOAD FROM ECS PARAMETERS

Order Parameter Description Notes
1 FWA of first First location of first destinétion list in data storage. @
list
2 Data IF Spacing of data words for all destination lists. @ @
3 Data word Number of data words to be loaded into each desti- @
count nation list. .)
4 NCC word -
5 RPA word Data format conversion words. Refer to table A-1 h
6 Word 1 mask for common values for these words. -
7 Word 2 mask -
8 Relative ECS Relative ECS address which, when added to user's
FWwWA absolute ECS RA, specifies first 60-bit word of
transfer.
9 Relative ECS Relative ECS address which, when added to user's @
limit address absolute ECS RA, specifies last legal 60-bit word of :
the transfer. Transfer may terminate before this
address.
10 List count Number of destination lists. @ @
11 List IF Spacing of corresponding data words in adjacent @ @ @

destination lists.

CICHCICIC)

Refer to Destination List Parameters in this appendix.
Must be nonzero integer.

If this value is to be changed by MODIFY call, user must observe restrictions listed in
section 2.

Omit for LOADP30 and LOADR32 macros.
Must be positive integer.

(first list FWA) + (j-1) - (List IF)+ i - (Data IF).

Address of word i in destination list j (i>0, j>1) is

60428900 D

TABLE A-4. UNLOAD TO ECS PARAMETERS

Order Parameter Description Notes
1 FWA of unload First MAP data storage location in list to be trans- -
list ferred to ECS.
2 Data IF Spacing of data words in unload list. @
3 Data word count | Number of data words to be sent to ECS. @
4 NCC word -
Data format conversion words. Refer to table A-1
5 RPA word for common values for these words. -
6 Word 1 mask -
7 Word 2 mask -
8 Relative ECS Relative ECS address which, when added to user's @
FWA absolute ECS RA, specifies first ECS location to
receive 60-bit word from MAP,
9 Relative ECS Relative ECS address which, when added to user's ®®
limit address absolute ECS RA, specifies last ECS location that
can legally receive 60-bit word from MAP. Trans-
fer may terminate before this address.
@ Must be nonzero integer.
® single word transfer from MAP to ECS is illegal.
@ If this value is to be changed by MODIFY call, user must observe restrictions listed in
section 2.
@ ECS limit address must be at least one greater than desired limit and evenly divisible by 8.

TABLE A-5. SUMPROD PARAMETERS

Order Parameter Description Notes
1 A FWA Location of AO in data storage (filter FWA). -
2 AIF Spacing of elements in (Aj) array. @
B FWA Location of B0 in data storage (trace FWA). -
4 B IF Spacing of elements in (Bj) array. 0
5 C FWA Location of C0 in data storage. -
6 CIF Spacing of elements in (Cj) array. @
7 LA Number of elements in (Aj), LA>10. -
LB Number of elements in (Bj), LB> LA. -
9 1C Number of elements in (Cj) array (number of results). -
10 s 0 Enable convolution. @
1 Enable correlation.
11 shift Initial shift of (Aj) array. ®
@ Positive integer.
@ MAP microcode characteristics require that 0 rather than -1 be used to select convolution.
@ Positive, negative, or zero integer.

60428900 D

TABLE A-8, STKMOVE PARAMETERS

Order Parameter Description Notes

1 A FWA Location of A in data storage. -
2 A IF Spacing of elements in (Aj) array. @
3 B FWA Location of BO in data storage. @
4 B IF Spacing of elements in (Bj) array. @ @
5 C FWA Location of CO in data storage. -
8 C IF Spacing of elements in (Cj) array. @
7 Pad Zero. @
8 Pad Zero. @
9 LC Number of elements in (Cj) array (number of results). -

10 s 0 Enable move. -

) 1 Enable stack.

11 Pad Zero. ®

@ Nonzero integer except as specified in following note.

@ 0 for move operations.,

@ Must be included to satisfy MAP microcode requirements.

TABLE A-7. CPILXFFT/ICPXFFT PARAMETERS
Order Parameter Description - Notes
1 R FWA Location of real part of first cdmplex input point. @
2 I FWA Location of imaginary part of first complex input @
point. v
3 Level count Logz(N) where N is number of complex input points. @
4 FWA of sine Location of first sine table entry. @ '
table .
5 FWA of Location of first cosine table entry. @
cosine table
6 Sine/cosine Spacing between consecutive table entries. Same ®O
table IF spacing must be used for both tables.

G 0

Positive integer.

For example, when 1024 complex points are being transformed, level count is 10.
Refer to Sine/Cosine Tables in this appendix.

Before transform, arrays R and I contain real and imaginary parts, respectively, for N
complex points of series to be transformed.
contiguous (implied increment factor of +1).
and imaginary parts, respectively, for complex points of transformed series.

Elements in both R and [arrays must be
After transform, arrays R and I contain real

60428900 D

TABLE A-8. REALFFT PARAMETERS

Order Parameter Description Notes

1 R FWA Location of first even-numbered real input point. @

2 I FWA Location of first odd-numbered real input point. @

3 Level count Logz(N) where N is number of real input points. @

4 FWA of sine Location of first sine table entry. @
table

5 FWA of Location of first cosine table entry. @
cosine table

6 Sine/cosine Spacing between consecutive table entries. Same @ @
table IF spacing must be used for both tables.

odd-numbered real input points.
(implied increment factor of +1).
(N/2) + 1 contiguous locations must be allocated for storage of complex results.
transform, arrays R and I contain real and imaginary parts, respectively, for first
(N/2) + 1 complex points of transformed series.

® For example, when 1024 real points are being transformed, level count is 10.

@ Positive integer.

(® Refer to Sine/Cosine Tables in this appendix.

@ Before transform, array R contains even-numbered real input points and array I contains
Elements in each of these arrays must be contiguous
Although initially arrays R and I each contain N/2 points,
After

TABLE A-9. ‘INVRFFT PARAMETERS

Order Parameter Description Notes
1 R FWA Location of real part of first complex input point. @)
2 I FWA Location of imaginary part of first complex input @
point.

3 Level count Log,(N) where N is number of real output points. ®

4 FWA of sine Location of first sine table entry. @
table ;

5 FWA of Location of first cosine table entry. @
cosine table

8 Sine/cosine Spacing between consecutive table entries. Same @ @
table IF spacing must be used for both tables.

OO

Before transform, arrays R and [contain real and imaginary parts, respectively, for first
{N/2) + 1 complex points of series to be transformed. First and last imaginary parts must
be zero. Elements in both R and I arrays must be contiguous (implied increment factor of
+1). ‘After transform, array R contains even-numbered real result points and array I con-
tains odd-numbered real result points.

For example, when 1024 real output values are expected, level count is 10.
Refer to Sine/Cosine Tables in this appendix.
Positive integer.

60428900 D

TABLE A-10. FILTER PARAMETERS

Order Parameter Description Notes
1 r FWA Location of ry in data storage. -
2 r IF Spacing of elements in list for array r.. @
3 G FWA Location of G‘r0 in data storage. -
4 G IF Spacing of elements in array Gi‘ @
5 F FWA Location of F0 in data storage. @
6 a FWA Location of a, in data storage. @
7 Length MD Number of elements of arrays a. and Fi to calculate. @

(Arrays rj and G, must each have at ledst length MD
elements.l) !
8 ALPHA address First location in data storage of three-word buffer -
used by FILTER to calculate each element of array
i
Word 1 Expected error for an aj array of
length MA (parameter 10).
Word 2 E operator for next element of array
a..
i
Word 3 H operator for next element of array
Fi‘
9 Length MS Element of arrays a. and F. at which to start @
calculation. - t !
10 MA Number of elements of arrays aj and F, calculated. @ @
(When array F. is unstable or singular, MA < length
MD; otherwise; MA = length MD.)
11 IFSTABL flag When IFSTABL flag is zero, it selects stability check | ()
on array F.. If array F. is unstable, IANS address
(parameter 13) contains 1.1, and MA address contains
number of stable elements in arrays a, and Fi'
12 IFSPIKE flag When IFSPIKE flag is zero, it selects generation of ®
array a. only; array G. is not required and array Fi
is not génerated. !
When IFSPIKE flag is nonzero, FILTER requires
array Gi and generates arrays 3 and Fi'
13 IANS FILTER macro status code. ®06
0 Normal return; MA = length MD.
-1 Array Fi unstable; MA < length MD.
-2 Array Fi singular; MA < length MD.

OO OO

Positive integer.

FILTER stores elements of arra
increment factor of +1),

Refer to FILTER description for more information.
Use MPARAM call to specify this common parameter for use by other macros.
When IFSTABL flag is zero and array Fi is singular, IANS code is -1.

ys a; and Fi in consecutive data storage locations (implied

60428900 D

TABLE A-11. NMO PARAMETERS

Order Parameter Description Notes
1 IN FWA Location of first input trace sample. -
2 V FWA Location of first velocity function value, @
3 OUT FWA Location of first output trace sample. -
4 N Number of input trace sample (N > 0). -
5 K1 Starting value of velocity function index (K1 > 0). -
6 K2 Preexecution Number of output trace samples to @ @
mute.
Postexecution Number of output trace samples
muted.
7 K3 Postexecution Index to first nonmuted output trace @ @
sample after sample identified by
parameter K2.
8 K4 Number of samples to move per velocity function -
v sample (K4 = 1 for NMO and K4 > 1 for velocity -
analysis computation).
9 BETA Location of first parameter in BETA auxiliary array. @

® PO O ©

Each value in this list must be squared inverse of velocity function value in distance/
millisecond units.

NMO returns value to this macro memory location. Use MPARAM call to specify this
common parameter for use by other macros. .

When nonzero upon entry, NMO interprets this value as number of output samples to mute.

When input trace has already been muted beyond sample specified by K2 or THRESH, this
value is index from last specified muted sample to first nonmuted output trace sample.

BETA array contains following floating-point values.,
BETA (1) = Tr = time between input trace samples in milliseconds.

(2) = TMAX = input trace last sample time in milliseconds.
(3) = D = squared offset distance for this input trace.

- (4) = THRESH = front end mute parameter (refer to NMO description for use).

(5) = Tlv = velocity function first sample time in milliseconds.
(6) = T1 = input trace first sample time in milliseconds.
(7 = Trv = time between velocity function samples in milliseconds.

60428900 D

TABLE A-12. TYPE 1 PARAMETERS @

Order Parameter Description Notes
1 A FWA Location of AO in data storage. -
2 A OFF Offset of array Aj from AO‘ -
3 AIF Spacing of elements in array Aj‘ -
4 LA Number of eléments in arrays. -
5 D FWA Locatic;n of D0 in data storage. -
6 D OFF Offset of array Dj from DO' -
7 ‘ D IF Spacing of elements in array Dj' -
8 FLAG Option flag. ®
9 AU Arithmetic unit selection. @

@ Following macros use this parameter block.

CVEC NMVEC ZEROVEC TVEC
NVEC SUMRVEC SQRTVEC XMM2DM
MVEC BCASVEC COMVEC XDM2MM

@ ‘Refer to appropriate macro description for use of this parameter.

TABLE A-13. TYPE 2 PARAMETERS @

Order Parameter Description " Notes
1 A FWA Location of AO in data storage. -
2 A OFF Offset of array Aj from AO‘ -
3 AIF Spacing of elements in array Aj' -
4 LA Number of elements in arrays. -
5 B FWA Location of B0 in data storage. -
6 B OFF Offset of array Bj from BO' -
7 BIF Spacing of elements in array Bj' -
8 D FWA Location of D0 in data storage. -
9 D OFF Offset of array Dj from DO' -

10 DIF Spacing of elements in array Dj' -
11 FLAG Option flag. ®
12 AU Arithmetic unit selection. @

@ Following macros use this parameter block.

ADDVEC IPVEC
SUBVEC MAXE
MULVEC MINE
DIVVEC

@ Refer to appropriate macro description for use of this parameter,

60428900 D

TABLE A-14. TYPE 3 PARAMETERS Q)

Order Parameter Description Notes
1 A FWA Location of A0 in data storage. -
2 A OFF Offset of array Aj from AO’ -
3 AIF Spacing of elements in array Aj' -
4 LA Number of elements in arrays. -
5 B FWA Location of BO in data storage. -
8 B OFF Offset of array Bj from BO' -
7 ' B IF Spacing of elements in array Bj' -
8 C FWA Location of CO in data storage. -
9 C OFF Offset of array Cj from CO. -
10 CIF Spacing of elements in array Cj‘ -
11 D FWA Location of D0 in data storage. -
12 D OFF Offset of array Dj from DO' -
13 D IF Spacing of elements in array Dj' -
14 FLAG Option flag. ®
15 AU Arithmetic unit selection. @
(@ Following macros use this parameter block.
MAVVS
MAVSV
MAVVV
@ Refer to appropriate macro description for use of this parameter.

60428900 D

MSAM CALL/MACRO SUMMARIES B

L R

Table B-1 summarizes macros available with the MAP III system. The following list shows MSAM call
sequences.

CALL METOPEN (met, symtable, controlware, conaddr, status[, errlim])
CALL MAPSET (met, macbuf, length, status)

CALL MALLOT (met, aryname, maplen, 0, mem, status)

CALL MEQUIV(metk, equivname, maplen, basearray, offset, status)
CALL MACRO{(macstr, tag, macname, paraddr, status)

CALL MPARAM(macstr, tag, value, length, status[, loc])

CALL MAPNOGO(met, macstr, status[, ref])

CALL MAPGO(met, macstr, timtable, errtable, recall, estime, status][, febits])
CALL MODIF Y({macstr, loc, value, status)

CALL MCLOSE(met, status)

CALL MRECALL(met, status)

CALL MRESET(met, status)

CALL MDUMP(x,y, z,¢c)

CALL MDRISE

TABLE B-1. MACRO SUMMARY

Octal
Macro Parameter
Category Group Macro Code Name Table
NOOP N/A | No operation N/A
JUMP N/A | Jump : N/A
RJUMP }(D)| N/A | Return jump N/A
HALT N/A | Halt . N/A
Control/ Standard END N/A | Terminate macro execution . N/A
pseudo UPM 31 Update parameter A-2
™M 32 Test macro memory A-2
XMM2DM 54 Transfer macro memory to data storage A-12
XDM2MM 54 Transfer data storage to macro memory A-12
LOADP32 | 20 Load packed 32-bit words from ECS A-3
UNLDP32 24 Unload packed 32-bit words to ECS A-4
LOADP30 21 Load packed 30-bit words from ECS A-3
ggjt / Standarg | UNLDP30 | 25 | Unload packed 30-bit words to ECS A-4
output LOADL32 22 Load left-justified 32-bit words from ECS A-3
UNLDL32 26 Unload left-justified 32 -bit words to ECS A-4
L.OADR32 23 Load right-justified 32 -bit words from ECS A-3
UNLDR32 27 Unload right-justified 32-bit words to ECS A-4
@ These macros execute from the read-only section of control memory and are not affected by control-
ware changes.

60428900 D B-1

TABLE B-1. MACRO SUMMARY (Contd)
Octal
Macro Parameter

Category Group Macro Code Name Table
Signal SUMPROD 00 Sum of products A-5
processing | sTRMOVE | 01 Stack/move A-6
CPIXFFT 04 Complex fast Fourier transform A-T7
ggs:'ier ICPXFFT 05 Inverse complex fast Fourier transform A-T7
transform REALFFT 02 Real fast Fourier transform A-8
INVRFFT 03 Inverse real fast Fourier transform A-9

Signal FILTER 07 Filter design A-10

processing | nyo 33 | Normal moveout A-11

CVEC 40 Copy vector A-12

NVEC 40 Negate vector A-12

MVEC 40 Magnitude vector A-12

NMVEC 40 Negative magnitude vector A-12

ADDVEC 41 Add vectors A-13

Arithmetic SUBVEC 41 Subtract vectors A-13

MULVEC 41 Multiply vectors A-13

DIVYEC 41 Divide vectors A-13

IPVEC 42 Inner product vectors A-13

Vector SUMRVEC | 43 | Sum reduction . A-12

BCASVEC 44 Broadcast scalar A-12

ZEROVEC 44 Zero array A-12

MAXE 45 MAX elements A-13

MINE 45 MIN elements A-13

SQRTVEC 46 Vector square root A-12

COMVEC 47 Compare vectors A-12

MAVVS 52 Multiply add vector, vector, scalar A-14 -

MAVSV 52 Multiply add vector, scalar, vector A-14

MAVVV 52 Multiply add vector, vector, vector A-14

TVEC 53 Pretruncate vector A-12

B-2 60428900 D

MAP RADIX POINT ADJUST WORD C

“

This appendix contains a detailed explanation of how
to use the radix point adjust (RPA) word parameter
for MAP floating-point ECS I/O operations. The
term radix point is a general version of the more
specific binary point and the more well-known deci-
mal point.

COMPARISON OF CDC CYBER AND MAP
FLOATING POINT FORMATS

Let F = EMMMM be a CDC CYBER floating-point
number with E denoting the 12-bit sign-and-
exponent byte and MMMM the 4 bytes of mantissa.
The mantissa is con31dered to be a 48-bit integer
MMMM. 0 between 0 and 248-1, That is, the radix
point is at the right or least-significant-bit end of
the mantissa. The integer mantissa, when multi-
plied by 2 raised to the power represented by E,
yields the floatmg point number represented by
EMMMM. Now let f = emmm be a MAP floating-
point number with e denoting the 8-bit sign-and-
exponent byte and mmm the 3 bytes of mantissa.
The mantissa is considered to be a 24-bit positive
fraction less than 1. That is, the radix point is at
the left or most-significant-bit end of the mantissa.
The fractional mantissa, when multiplied by 2
raised to the power represented by e, yields the
floating-point number represented by emmm.

NORMAL RPA USE FOR LOADING DATA

Unless the MAP is informed otherwise, it assumes
that each number it loads has a fractional mantissa.
In particular, EMMMM is treated as the fraction

0. MMMM times 2 raised to the power represented
by E. This amounts to dividing the number that
EMMMM represents by 24 during the loading pro-
cess. Since the MAP adds the RPA value to the
exponent of the external number during loading,
this division by 2%° can be compensated for by
spec1§y1ng RPA = 48 (=60) to request mu1t1p11cat10n
by 24

USING RPA FOR LOADING SCALED DATA

If data to be loaded is outside the range of numbers
representable in the MAP (approx1mate1y, Eumbers
with absolute value between 1019 ang 101

it is suspected that operations performed on data in
that range will produce results out of that range,
portions of the data should be altered by scaling
during the loading process. As RPA = 48 multiplies
data by 248 to compensate for the difference be-
tween the CDC CYBER and MAP radix point con-
ventions, external data may be transferred to the

60428900 D

)e or if

MAP multiplied by 2% by using RPA = 48+n. For
example, RPA = 48+10 = 72, multiplies input by
1024 and RPA = 48-10 = 46g divides input by 1024.
Since RPA is a 12-bit two's complement value,
special care may be necessary if 48+n is niegative.
For instance, multiplication by 2~ during a load
requires RPA = 48-49= -1 = 77778. This is not a
12-bit representation of 0.

USING RPA FOR UNLOADING DATA

The general rule is that if MAP internal data is to
be unloaded with some radix point adjustment, use
the two's complement (negative) of the RPA value
used to load the unloaded numbers back into the
MAP exactly as they were. To unload standard
MAP numbers into standard CDC CYBER format
with no scaling, use the two's complement of 608

(= 7717g+1 = 7720g) since 60g is the no scaling RPA
for loading. To divide the numbers by 1024 on the
way out of the MAP, use RPA = 7706g which is the
two's complement of 72g. Similarly, multiplication
by 1024 during unloads requires RPA = 77328.

TYPICAL EXAMPLE OF SCALING

Suppose a macro string is to be constructed for the
task of computing the autocorrelation of a sequence
Tg,Tis...5Tggg, whege the terms in the sequence
are all in the range 10° to 1010, The terms
Ag, A «+»Aggg of the resultmg sequence are de-
fined]by~

999-k

A= B Ty Ty
i=0

Each A-value is g sum of up to 1000 numbers in the
range 1016 t0 1020, and so must be in the range
1016 to 1023, This only partially overlaps the
upper range of the MAP. One solution would be to
load the sequence tg,t;,...,tgg9g defined by

t; = T;/1024. Then the SUMPROD macro for the
autocorrelatxon would produce the result sequence
24s31s 0058009 defined by:

999-k 999-k
= - -2
a = z ti tk+i = (1024) = Ti Tk+i
i=0 i=0
Since Ak = (1024) ak (approximately 10 ay) for each

k, the a—values are in or slightly below the range
1010 to 10! The correctly scaled A-values can
then be unloaded to ECS by unloading the a-values
multiplied by 2 0. Therefore, one loads the

T-values with an RPA of 60g-12g = 46g and unloads
the autocorrelation results with an RPA of
-(60g-24g) = -34g = 7743g+1 = 7744g. Any possi-
bilities of arithmetic unit overflow are thereby
avoided. Underflow problems can be handled
similarly.

GENERAL REMARKS ON USING RPA WORD

Two cautionary remarks should be made at this:
point. First, overcompensate by scaling if the
range of the data to be loaded is not known exactly.

Second, think very carefully about what will happen
to the data inside the MAP. Theoretically follow
through the entire requested MAP procedure (as

in the previous example) to ensure that the chosen
scaling of loaded data will not produce any unwanted
underflows or overflows for intermediate results,
and also to determine what scaling factor to use

for unloading the final results.

60428900 D

INDEX

m

ADDVEC macro 3-8 Macro
A/D mask words A-3 Categories 3-1
Description 1-1
Parameters A-1
Summary B-1
BCASVEC macro 3-9 MACRO call 2-6
Macro field 2-1
Macro string 1-1; 2-1
Macro string assembly module 2-1

COMVEC macro 3-10 MALLOT call 2-6
Controlware 1-1; 2-4 MAP

CPLXFFT macro 3-6 Data format 1-3
CPLXFFT/ICPXFFT parameters A-8 Description 1-1
CVEC macro 3-8 Options 1-1

MAPGO call 2-8
MAPINIT. command 5-1
MAPNOGO call 2-7
Destination list parameters A-3 MAPSET call 2-6
DIVVEC macro 3-8 MAP III system 1-1
MAP III system software interface 1-3
MAP, ABORT. command 5-1
MAP, CHECKPOINT. command 5-1

ECS parameters A-6,7 MAP,CLEAR. command 5-1
END macro 3-1 MAP, DIAG. command 5-1
Error table 2-8;4-3 . MAP, DOWN. command 5-1

MAP,IDLE. command 5-1
MAP, NODUMP. command 5-1
MAP, UNLOCK. command 5-1

Field length allocation 4-1 MAP, UP. command 5-1

FILTER macro 3-7 - Matrix Algorithm Processor III 1-1
FILTER parameters A-10 MAVSV macro 3-9

‘First word address A-1 MAVVS macro 3-9

Format conversion parameters A-3 MAVVYV macro 3-9

MAXE macro 3-9
MCLOSE call 2-9
MDRLSE call 2-10

HALT macro 3-1 MDUMP call 2-9
Header 2-1 MDUMP control card 4-1
MEQUIV call 2-6
Messages
Console 5-1
ICPXFFT macro 3-8 Dayfile 5-5
Increment factor A-1 Error log 5-6
INVRFFT macro 3-6 MET 2-4
INVRFFT parameters A-9 METOPEN call 2-4
IPVEC macro 3-8 MINE macro 3-9

MODIFY call 2-9
MPARAM call 2-7
MRECALL call 2-9
Job sequence 1-5 MRESET call 2-9
JUMP macro 3-1 MSAM
Call summary B-1
Calls 2-4
Description 2-1
LOADL32 macro 3-2 MSSI 1-3
LOADP30 macro 3-2 MULVEC macro 3-8
LLOADP32 macro 3-2 MVEC macro 3-8
LOADR32 macro 3-2
LOCE function 4-1

60428900 D Index-1

NCC word A-1

NMO macro 3-8

NMO parameters A-11
NMVEC macro 3-8
NOOP macro 3-1
NVEC macro 3-8

Operator commands 5-1

OUTPUT file declaration 4-1

Parameter field 2-1

Parameter subscripting 2-7

Program examples 4-3
Program recall 4-2

REALFFT macro 3-8
REALFFT parameters
RJUMP macro 3-1

RPA word A-1, C-1

Schedule table 4-2
Sine/cosine tables A-4
SQRTVEC macro 3-9
Status
MAP status 2-8
MET code/status
MSAM status 2-4

Index-2

A-9

4-2

STKMOVE macro 3-5
STKMOVE parameters
SUBVEC macro 3-8

SUMPROD macro 3-3
SUMPROD parameters
SUMRVEC macro 3-9

Timing table 2-8; 4-3
TMM macro 3-1
TVEC macro 3-9

Type 1 parameters A-12
Type 2 parameters A-12
Type 3 parameters A-13

UNLDL32 macro 3
UNLDP30 macro 3
UNLDP32 macro 3-
UNLDR32 macro 3-
UPM macro 3-1
UPM/TMM parameters
User control 1-5

XDM2MM macro 3-1
XMM2DM macro 3-1

ZEROVEC macro 3-9

A-5

60428900 D

CUT ALONG LINE

PRINTED IN US.A.

—-———-——.—-—-——-—-—-———-—-—-————-—-—.—-———.—-—-u——-——.—-————.—.——-—.—-—-——~_-

AA3419 REV. 6/78

COMMENT SHEET

MANUAL TiTLE __CDC MAP III System User Reference Manual

PUBLICATION NO._ 60428901 REVISION _D

FROM: name: ' :

BUSINESS
ADDRESS:

COMMENTS:

This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may be
made below. Please include page number references and fill in publication revision level as shown by the
last entry on the Revision Record page at the front of the manual. Customer engineers are urged to use
the TAR.

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE

e mm wn cvn s e e o em e e mm e e e eme e e e Gem G e wme e wme s aee e e e -

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A,

‘ POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division
ARH219

4201 North Lexington Avenue
Saint Paul, Minnesota 55112

STAPLE

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

CUT ALONG LINE

